scholarly journals Effect of acute acid-base disturbances on the phosphorylation of phospholipase C-γ1 and Erk1/2 in the renal proximal tubule

2015 ◽  
Vol 3 (3) ◽  
pp. e12280 ◽  
Author(s):  
Lara A. Skelton ◽  
Walter F. Boron
1989 ◽  
Vol 256 (3) ◽  
pp. F414-F420 ◽  
Author(s):  
O. S. Ruiz ◽  
J. A. Arruda ◽  
Z. Talor

Renal acidification in renal proximal tubule is thought to be mediated by luminal Na-H antiporter and the HCO3- generated by this antiporter is removed from the cell by a basolateral Na-HCO3 cotransporter. To study the effect of respiratory acid-base disorders on these transport systems, we have measured the Na-HCO3 cotransport in basolateral membranes and Na-H antiporter in luminal membranes in control rabbits, rabbits exposed to 10% CO2 (chronic hypercapnia), and rabbits exposed to 10% O2-90% N2 (chronic hypocapnia). The Vmax of HCO3(-)-dependent 22Na uptake was significantly higher in chronic hypercapnia than controls (2.54 +/- 0.03 vs. 1.18 +/- 0.21 nmol.mg protein-1.3 s-1, P less than 0.001). Likewise, the Vmax of the Na-H antiporter was also increased compared with controls (924.9 +/- 42.1 vs. 549.1 +/- 62.8 fluorescence units (FU).300 micrograms protein-1.min-1). In chronic hypocapnia, the Vmax of Na-HCO3 cotransport was lower than controls (0.72 +/- 0.11 vs. 1.18 +/- 0.21 nmol.mg protein-1.3 s-1, P less than 0.05). There was no difference, however, in the Vmax of the Na-H antiporter between hypocapnia and control (524.2 +/- 24.3 vs. 549.1 +/- 62.8, FU.300 micrograms protein-1.min-1). The Vmaxs of the Na-HCO3 cotransport and of the Na-H antiporter in hypocapnic, control, and hypercapnic rabbits were linearly related (r = 0.81), suggesting a simultaneous adaptation of the two systems in respiratory acid-base disorders.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 423-423 (1-2) ◽  
pp. 7-13 ◽  
Author(s):  
George Seki ◽  
Shigeo Taniguchi ◽  
Shu Uwatoko ◽  
Keiji Suzuki ◽  
Kiyoshi Kurokawa

2013 ◽  
Vol 03 (04) ◽  
pp. 186-193
Author(s):  
Shoko Horita ◽  
Osamu Yamazaki ◽  
Motonobu Nakamura ◽  
Hideomi Yamada ◽  
Masashi Suzuki ◽  
...  

Author(s):  
J. M. Barrett ◽  
P. M. Heidger

Microbodies have received extensive morphological and cytochemical investigation since they were first described by Rhodin in 1954. To our knowledge, however, all investigations of microbodies and cytoplasmic bodies of rat renal proximal tubule cells have employed immersion fixation. Tisher, et al. have shown convincing evidence of fine structural alteration of microbodies in rhesus monkey kidney following immersion fixation; these alterations were not encountered when in vivo intravascular perfusion was employed. In view of these studies, and the fact that techniques for perfusion fixation have been established specifically for the rat kidney by Maunsbach, it seemed desirable to employ perfusion fixation to study the fine structure and distribution of microbodies and cytoplasmic bodies within the rat renal proximal tubule.


2013 ◽  
Vol 9 (2) ◽  
pp. 148-155 ◽  
Author(s):  
Shoko Horita ◽  
George Seki ◽  
Hideomi Yamada ◽  
Masashi Suzuki ◽  
Kazuhiko Koike ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 414
Author(s):  
Saja Baraghithy ◽  
Yael Soae ◽  
Dekel Assaf ◽  
Liad Hinden ◽  
Shiran Udi ◽  
...  

The renal proximal tubule cells (RPTCs), well-known for maintaining glucose and mineral homeostasis, play a critical role in the regulation of kidney function and bone remodeling. Deterioration in RPTC function may therefore lead to the development of diabetic kidney disease (DKD) and osteoporosis. Previously, we have shown that the cannabinoid-1 receptor (CB1R) modulates both kidney function as well as bone remodeling and mass via its direct role in RPTCs and bone cells, respectively. Here we employed genetic and pharmacological approaches that target CB1R, and found that its specific nullification in RPTCs preserves bone mass and remodeling both under normo- and hyper-glycemic conditions, and that its chronic blockade prevents the development of diabetes-induced bone loss. These protective effects of negatively targeting CB1R specifically in RPTCs were associated with its ability to modulate erythropoietin (EPO) synthesis, a hormone known to affect bone mass and remodeling. Our findings highlight a novel molecular mechanism by which CB1R in RPTCs remotely regulates skeletal homeostasis via a kidney-to-bone axis that involves EPO.


Sign in / Sign up

Export Citation Format

Share Document