On a simple approach for Q-S synchronisation of chaotic dynamical systems in continuous-time

Author(s):  
Adel Ouannas ◽  
Ahmad Taher Azar ◽  
Sundarapandian Vaidyanathan
Author(s):  
Kostas Chlouverakis

This chapter describes the fundamental concepts of continuous-time chaotic dynamical systems so as to make the book self-contained and readable by fairly unfamiliar people with using simple chaotic systems and understanding their chaotic properties, but also by experts who desire to refine their knowledge regarding chaos theory. It will also define the sense in which a chaotic system is suitable for real-world applications such as encryption.


2001 ◽  
Vol 08 (02) ◽  
pp. 137-146 ◽  
Author(s):  
Janusz Szczepański ◽  
Zbigniew Kotulski

Pseudorandom number generators are used in many areas of contemporary technology such as modern communication systems and engineering applications. In recent years a new approach to secure transmission of information based on the application of the theory of chaotic dynamical systems has been developed. In this paper we present a method of generating pseudorandom numbers applying discrete chaotic dynamical systems. The idea of construction of chaotic pseudorandom number generators (CPRNG) intrinsically exploits the property of extreme sensitivity of trajectories to small changes of initial conditions, since the generated bits are associated with trajectories in an appropriate way. To ensure good statistical properties of the CPRBG (which determine its quality) we assume that the dynamical systems used are also ergodic or preferably mixing. Finally, since chaotic systems often appear in realistic physical situations, we suggest a physical model of CPRNG.


1991 ◽  
Vol 05 (14) ◽  
pp. 2323-2345 ◽  
Author(s):  
R.E. AMRITKAR ◽  
P.M. GADE

We discuss different methods of characterizing the loss of memory of initial conditions in chaotic dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document