The effect of traditional and reduced tillage systems on the sediment yield of plots constructed in the Mediterranean climate zone caused by natural rainfall

2020 ◽  
Vol 21 (4) ◽  
pp. 393
Author(s):  
Recep Gundogan ◽  
Veysel Alma ◽  
Kadir Kusvuran ◽  
Abdullah Emin Akay ◽  
Turgay Dindaroglu ◽  
...  
Author(s):  
Gökhan Gökçe ◽  
Gökhan Tamer Kayaalp ◽  
Melis Çelik Güney

The present research was conducted to determine the effect of season, lactation number and type score factors on the somatic cell count (SCC) in Black and White cattle raised in the Mediterranean climate zone. 1368 milk samples obtained from 128 cattle were analysed for SCC determination. Significant effects of season, lactation number and type scores on SCC were observed. The results indicate that the necessity to comply with the care and barn cleaning of the cows in the summer and the importance of the type characteristics in the selection programs may be effective in reducing the of SCC.


2012 ◽  
Vol 9 (8) ◽  
pp. 9193-9238 ◽  
Author(s):  
C. Schneider ◽  
C. L. R. Laizé ◽  
M. C. Acreman ◽  
M. Flörke

Abstract. Worldwide, flow regimes are being modified by various anthropogenic impacts and climate change induces an additional risk. Rising evapotranspiration rates, declining snow cover and changing precipitation patterns will interact differently at different locations. Consequently, in distinct climate zones, unequal consequences can be expected in matters of water stress, flood risk, water quality, and food security. In particular, river ecosystems and their vital ecosystem services will be compromised as their species richness and composition have evolved over long time under natural flow conditions. This study aims at evaluating the exclusive impacts of climate change on river flow regimes in Europe. Various flow characteristics are taken into consideration and diverse dynamics are identified for each distinct climate zone in Europe. In order to simulate natural and modified flow regimes, the global hydrology model WaterGAP3 is applied. All calculations for current and future conditions (2050s) are carried out on a 5' × 5' European grid. To address uncertainty, climate forcing data of three different global climate models are used to drive WaterGAP3. Finally, the hydrological alterations of different flow characteristics are quantified by the Indicators of Hydrological Alteration approach. Results of our analysis indicate that on European scale, climate change can be expected to modify flow regimes significantly. This is especially the case in the Mediterranean climate zone (due to drier conditions with reduced precipitation across the year) and in the continental climate zone (due to reduced snowmelt and drier summers). Regarding single flow characteristics, strongest impacts on timing were found for the boreal climate zone. This applies for both, high and low flows. While low flow magnitudes are likely to be stronger influenced in the Mediterranean climate, high flow magnitudes will be mainly altered in snow climates with warmer summers. At the end of this study, typical future flow regimes under climate change are illustrated for each climate zone including a validation on robustness.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3313
Author(s):  
Juan Luis Aguirre ◽  
María Teresa Martín ◽  
Sergio González ◽  
Manuel Peinado

The effects of two types of biochar on corn production in the Mediterranean climate during the growing season were analyzed. The two types of biochar were obtained from pyrolysis of Pinus pinaster. B1 was fully pyrolyzed with 55.90% organic carbon, and B2 was medium pyrolyzed with 23.50% organic carbon. B1 and B2 were supplemented in the soil of 20 plots (1 m2) at a dose of 4 kg/m2. C1 and C2 (10 plots each) served as control plots. The plots were automatically irrigated and fertilizer was not applied. The B1-supplemented plots exhibited a significant 84.58% increase in dry corn production per square meter and a 93.16% increase in corn wet weight (p << 0.001). Corn production was no different between B2-supplemented, C1, and C2 plots (p > 0.01). The weight of cobs from B1-supplemented plots was 62.3%, which was significantly higher than that of cobs from C1 and C2 plots (p < 0.01). The grain weight increased significantly by 23% in B1-supplemented plots (p < 0.01) and there were no differences between B2-supplemented, C1, and C2 plots. At the end of the treatment, the soil of the B1-supplemented plots exhibited increased levels of sulfate, nitrate, magnesium, conductivity, and saturation percentage. Based on these results, the economic sustainability of this application in agriculture was studied at a standard price of €190 per ton of biochar. Amortization of this investment can be achieved in 5.52 years according to this cost. Considering the fertilizer cost savings of 50% and the water cost savings of 25%, the amortization can be achieved in 4.15 years. If the price of biochar could be reduced through the CO2 emission market at €30 per ton of non-emitted CO2, the amortization can be achieved in 2.80 years. Biochar markedly improves corn production in the Mediterranean climate. However, the amortization time must be further reduced, and enhanced production must be guaranteed over the years with long term field trials so that the product is marketable or other high value-added crops must be identified.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1276
Author(s):  
Vaida Steponavičienė ◽  
Aušra Marcinkevičienė ◽  
Lina Marija Butkevičienė ◽  
Lina Skinulienė ◽  
Vaclovas Bogužas

The composition of weed communities in agricultural crops is dependent on soil properties and the applied agronomic practices. The current study determined the effect of different tillage systems and crop residue on the soil weed community composition. The research programme encompassed 2013–2015 in a long-term field experiment located in the Experimental Station of Vytautas Magnus University in Lithuania. The soil type in the experimental field was qualified as Endocalcaric Stagnosol (Aric, Drainic, Ruptic, Amphisiltic). Weeds were categorised into communities according to soil pH, nitrogen and moisture indicators. The results of investigations were grouped using cluster analysis. Agricultural crops were dominated by different weed species depending on the soil pH and moisture. Weed species were relatively more frequent indicating nitrogen-rich and very nitrogen-rich soils. In the reduced tillage and no-tillage systems, an increase in the abundance of weed species indicating moderate acidity and low acidity, moderately wet and wet, nitrogen-rich and very nitrogen-rich soils was observed. The application of plant residues decreased the weed species abundance. In the reduced tillage and no-tillage systems, the quantitative distribution of weed was often uneven. By evaluating the association of weed communities with groups of different tillage systems with or without plant residues, their control can be optimised.


Sign in / Sign up

Export Citation Format

Share Document