A comparative study of text mining in big data analytics using deep learning and other machine learning algorithms

2019 ◽  
Vol 1 (2/3) ◽  
pp. 163
Author(s):  
Souvik Chowdhury ◽  
Shibakali Gupta
Author(s):  
Sai Hanuman Akundi ◽  
Soujanya R ◽  
Madhuri PM

In recent years vast quantities of data have been managed in various ways of medical applications and multiple organizations worldwide have developed this type of data and, together, these heterogeneous data are called big data. Data with other characteristics, quantity, speed and variety are the word big data. The healthcare sector has faced the need to handle the large data from different sources, renowned for generating large amounts of heterogeneous data. We can use the Big Data analysis to make proper decision in the health system by tweaking some of the current machine learning algorithms. If we have a large amount of knowledge that we want to predict or identify patterns, master learning would be the way forward. In this article, a brief overview of the Big Data, functionality and ways of Big data analytics are presented, which play an important role and affect healthcare information technology significantly. Within this paper we have presented a comparative study of algorithms for machine learning. We need to make effective use of all the current machine learning algorithms to anticipate accurate outcomes in the world of nursing.


Author(s):  
Balasree K ◽  
Dharmarajan K

In rapid development of Big Data technology over the recent years, this paper discussing about the Machine Learning (ML) playing role that is based on methods and algorithms to Big Data Processing and Big Data Analytics. In evolutionary fields and computing fields of developments that both are complementing each other. Big Data: The rapid growth of such data solutions needed to be studied and provided to handle then to gain the knowledge from datasets and extracting values due to the data sets are very high in velocity and variety. The Big data analytics are involving and indicating the appropriate data storage and computational outline that enhanced by using Scalable Machine Learning Algorithms and Big Data Analytics then the analytics to reveal the massive amounts of hidden data’s and secret correlations. This type of Analytic information useful for organizations and companies to gain deeper knowledge, development and getting advantages over the competition. When using this Analytics we can predict the accurate implementation over the data. This paper presented about the detailed review of state-of-the-art developments and overview of advantages and challenges in Machine Learning Algorithms over big data analytics.


2019 ◽  
Vol 2019 (2) ◽  
pp. 103-112
Author(s):  
Dr. Pasumpon pandian

The recent technological growth at a rapid pace has paved way for the big data that denotes to the exponential growth of the information’s. The big data analytics are the trending concepts that have emerged as the promising technology that offers more enhanced perceptions from the huge set of the data that have been produced from the diverse areas. The review in the paper proceeds with the methods of the big-data-analytics and the machine-learning in handling, the huge set of data flow. The overview of the utilization of the machine-learning algorithms in the analytics of high voluminous data would provide with the deeper and the richer analysis of the huge set of information gathered to extract the valuable and turn it into actionable information’s. The paper is to review the part of machine-learning algorithms in the analytics of high voluminous data


2021 ◽  
Author(s):  
Yew Kee Wong

In the information era, enormous amounts of data have become available on hand to decision makers. Big data refers to datasets that are not only big, but also high in variety and velocity, which makes them difficult to handle using traditional tools and techniques. Due to the rapid growth of such data, solutions need to be studiedand provided in order to handle and extract value and knowledge from these datasets. Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. Such minimal human intervention can be provided using big data analytics, which is the application of advanced analytics techniques on big data. This paper aims to analyse some of the different machine learning algorithms and methods which can be applied to big data analysis, as well as the opportunities provided by the application of big data analytics in various decision making domains.


Sign in / Sign up

Export Citation Format

Share Document