scholarly journals Preparation and in vivo evaluation of a gel-based nasal delivery system for risperidone

2016 ◽  
Vol 66 (4) ◽  
pp. 555-562 ◽  
Author(s):  
Fugen Gu ◽  
Weina Ma ◽  
Gendalai Meng ◽  
Chunzhi Wu ◽  
Yi Wang

Abstract The aim of this study was to prepare a nasal gel of risperidone and to investigate the pharmacokinetics and relative bioavailability of the drug in rats. Compared with oral dosing, the risperidone nasal gel exhibited very fast absorption and high bioavailability. Maximal plasma concentration (cmax) and the time to reach cmax (tmax) were 15.2 μg mL-1 and 5 min for the nasal gel, 3.6 μg mL-1 and 30 min for the oral drug suspension, respectively. Pharmacokinetic parameters such as tmax′, cmax and AUC of oral and nasal routes were significantly different (p < 0.01). Relative bioavailability of the drug nasal preparation to the oral suspension was up to 1600.0 %. Further, the in vitro effect of the risperidone nasal gel on nasal mucociliary movement was also investigated using a toad palate model. The risperidone nasal formulation showed mild ciliotoxicity, but the adverse effect was temporary and reversible.

2020 ◽  
Vol 70 (3) ◽  
pp. 411-422 ◽  
Author(s):  
Fugen Gu ◽  
Huimin Fan ◽  
Zhixin Cong ◽  
Shuang Li ◽  
Yi Wang ◽  
...  

AbstractDonepezil hydrochloride thermosensitive in situ gel for nasal delivery was prepared by using Poloxamer 407 and Poloxamer 188 as thermoreversible polymers, hydroxypropyl-β-cyclodextrin and ethylparaben as permeation enhancer and preservative, respectively. The gelation temperature and time, pH value of the gel formulation were found to meet the requirements for nasal administration. The in vitro erosion and in vitro release tests exhibited obvious drug sustained release behavior. Meantime, main pharmacokinetic parameters such as tmax, cmax and AUC in plasma as well as in brain were significantly different between the nasal gel formulation and intragastric drug solution in rats (p < 0.01). The relative bioavailability and drug targeting efficiency of the gel formulation were calculated to be 385.6 and 151.2 %, respectively. Thus, the drug gel formulation might be a potential new delivery system for treatment of Alzheimer’s disease due to its higher bioavailability and better distribution to brain when compared to oral route.


2009 ◽  
Vol 59 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Pramod Kumar ◽  
Sanjay Singh ◽  
Brahmeshwar Mishra

Development and biopharmaceutical evaluation of extended release formulation of tramadol hydrochloride based on osmotic technologyExtended release formulation of tramadol hydrochloride (TRH) based on osmotic technology was developed and evaluated. Target release profile was selected and different variables were optimized to achieve it. Formulation variables such as the level of swellable polymer, plasticizer and the coat thickness of semipermeable membrane (SPM) were found to markedly affect drug release. TRH release was directly proportional to the levels of plasticizer but inversely proportional to the levels of swellable polymer and coat thickness of SPM. Drug release from developed formulations was independent of pH and agitation intensity but dependent on osmotic pressure of the release media.In vivostudy was also performed on six healthy human volunteers and various pharmacokinetic parameters (cmax,tmax,AUC0-24,MRT) and relative bioavailability were calculated. Thein vitroandin vivoresults were compared with the performance of two commercial TRH tablets. The developed formulation provided more prolonged and controlled TRH release compared to the marketed formulation.In vitro-in vivocorrelation (IVIVC) was analyzed according to the Wagner-Nelson method. The optimized formulation (batch IVB) exhibited good IVIV correlation (R= 0.9750). The manufacturing procedure was found to be reproducible and formulations were stable over 6 months of accelerated stability testing.


2004 ◽  
Vol 100 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Verena M. Leitner ◽  
Davide Guggi ◽  
Alexander H. Krauland ◽  
Andreas Bernkop-Schnürch

2017 ◽  
Vol 44 (3) ◽  
pp. 484-492 ◽  
Author(s):  
Shravan Kumar Pitta ◽  
Narendar Dudhipala ◽  
Arjun Narala ◽  
Kishan Veerabrahma

2020 ◽  
Vol 26 (44) ◽  
pp. 5755-5763
Author(s):  
Kaleem Ullah ◽  
Shujaat Ali Khan ◽  
Muhammad Sohail ◽  
Abdul Mannan ◽  
Ghulam Murtaza

Background: Oxaliplatin (OXP), a 3rd generation platinum compound, which causes severe side effects due to; impulse high concentration in the bloodstream thereby exposing healthy cells at a high ratio, nonspecific delivery at the target site and non-compliance is administered intravenously. Objective: The project was aimed at the development, characterization, and in-vitro and in-vivo evaluation of pHresponsive hydrogels for oral administration of OXP. Methods: Hydrogel formulations were synthesized through a free radical polymerization technique followed by brief characterization using various techniques. The hydrogels were investigated for various in-vitro studies such as sol-gel, drug loading, swelling, drug release, and MTT-assay. While in-vivo studies such as oral tolerability, histopathology, and hematology studies were performed on rabbits. A simple and sensitive HPLC-UV method was optimized and the comparative pharmacokinetic study was performed in rabbits using OXP-oral solution and OXP-loaded hydrogels. Results: In-vitro characterization confirmed that the reactant was successfully crosslinked to form thermally stable hydrogels with decreased crystallinity and rough surface. Swelling and drug release showed that hydrogels were more responsive to basic pH (6.8 and 7.4) in comparison with pH 1.2. The blank hydrogels were cytocompatible as more than 95% of the cells were viable while free OXP and OXP-loaded hydrogels displayed dosedependent cytotoxic effect. In-vivo studies confirmed that chitosan and gelatin hydrogel suspension was well tolerable up to 3800 mg/kg and 4000 mg/kg of body weight, respectively. Hematology and serum chemistry reports were well within the range suggesting normal liver and kidney functions. Similarly, histopathology slides of rabbit vital organs were also found normal without causing any histopathological change. Conclusion: HPLC-UV method was successfully optimized for OXP detection in oral solution and hydrogels administered to rabbits. A significant difference was found among various pharmacokinetic parameters by comparing the two groups including half-life (t1/2), tmax, Cmax, AUCtot MRT, Vz, and Lz.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1210
Author(s):  
Sultan Alshehri ◽  
Abdullah Alanazi ◽  
Ehab M. Elzayat ◽  
Mohammad A. Altamimi ◽  
Syed S. Imam ◽  
...  

Gefitinib (Gef) is a poorly water-soluble antitumor drug, which shows poor absorption/bioavailability after oral administration. Therefore, this study was carried out to develop Gef solid dispersions (SDs) using different carriers and different techniques in order to enhance its dissolution and oral absorption/bioavailability. Various SD formulations of Gef were established using fusion and microwave methods utilizing Soluplus, Kollidone VA64, and polyethylene glycol 4000 (PEG 4000) as the carriers. Developed SDs of Gef were characterized physicochemically and evaluated for in vitro dissolution and in vivo pharmacokinetic studies. The physicochemical evaluation revealed the formation of Gef SDs using fusion and microwave methods. In vitro dissolution studies indicated significant release of Gef from all SDs compared to the pure Gef. Optimized SD of Gef (S2-MW) presented significant release of Gef (82.10%) compared with pure Gef (21.23%). The optimized Gef SD (S2) was subjected to in vivo pharmacokinetic evaluation in comparison with pure Gef in rats. The results indicated significant enhancement in various pharmacokinetic parameters of Gef from an optimized SD S2 compared to the pure Gef. In addition, Gef-SD S2 resulted in remarkable improvement in bioavailability compared to the pure Gef. Overall, this study suggested that the prepared Gef-SD by microwave method showed marked enhancement in dissolution and bioavailability.


2020 ◽  
Vol 33 (4) ◽  
pp. 670-677
Author(s):  
Sung-Hoon Ahn ◽  
Tae-Hwe Heo ◽  
Hyun-Sik Jun ◽  
Yongseok Choi

Objective: Interleukin-6 (IL-6) is a T cell-derived B cell stimulating factor which plays an important role in inflammatory diseases. In this study, the pharmacokinetic properties of LMT-28 including physicochemical property, <i>in vitro</i> liver microsomal stability and an <i>in vivo</i> pharmacokinetic study using BALB/c mice were characterized.Methods: LMT-28 has been synthesized and is being developed as a novel therapeutic IL-6 inhibitor. The physicochemical properties and <i>in vitro</i> pharmacokinetic profiles such as liver microsomal stability and Madin-Darby canine kidney (MDCK) cell permeability assay were examined. For <i>in vivo</i> pharmacokinetic studies, pharmacokinetic parameters using BALB/c mice were calculated.Results: The logarithm of the partition coefficient value (LogP; 3.65) and the apparent permeability coefficient values (P<sub>app</sub>; 9.7×10<sup>–6</sup> cm/s) showed that LMT-28 possesses a moderate-high cell permeability property across MDCK cell monolayers. The plasma protein binding rate of LMT-28 was 92.4% and mostly bound to serum albumin. The metabolic half-life (t<sub>1/2</sub>) values of LMT-28 were 15.3 min for rat and 21.9 min for human at the concentration 1 μM. The area under the plasma drug concentration-time curve and C<sub>max</sub> after oral administration (5 mg/kg) of LMT-28 were 302±209 h∙ng/mL and 137±100 ng/mL, respectively.Conclusion: These data suggest that LMT-28 may have good physicochemical and pharmacokinetic properties and may be a novel oral drug candidate as the first synthetic IL-6 inhibitor to ameliorate mammalian inflammation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1048
Author(s):  
Noha M. Meligi ◽  
Amro K.F. Dyab ◽  
Vesselin N. Paunov

We developed a dual microencapsulation platform for the type 2 diabetes drug metformin (MTF), which is aimed to increase its bioavailability. We report the use of Lycopodium clavatum sporopollenin (LCS), derived from their natural spores, and raw Phoenix dactylifera L. (date palm) pollens (DPP) for MTF microencapsulation. MTF was loaded into LCS and DPP via a vacuum and a novel method of hydration-induced swelling. The loading capacity (LC) and encapsulation efficiency (EE) percentages for MTF-loaded LCS and MTF-loaded DPP microcapsules were 14.9% ± 0.7, 29.8 ± 0.8, and 15.2% ± 0.7, 30.3 ± 1.0, respectively. The release of MTF from MTF-loaded LCS microcapsules was additionally controlled by re-encapsulating the loaded microcapsules into calcium alginate (ALG) microbeads via ionotropic gelation, where the release of MTF was found to be significantly slower and pH-dependent. The pharmacokinetic parameters, obtained from the in vivo study, revealed that the relative bioavailability of the MTF-loaded LCS-ALG beads was 1.215 times higher compared to pure MTF, following oral administration of a single dose equivalent to 25 mg/kg body weight MTF to streptozotocin (STZ)-induced diabetic male Sprague-Dawley rats. Significant hypoglycemic effect was obtained for STZ-induced diabetic rats orally treated with MTF-loaded LCS-ALG beads compared to control diabetic rats. Over a period of 29 days, the STZ-induced diabetic rats treated with MTF-loaded LCS-ALG beads showed a decrease in the aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglycerides, cholesterol, and low-density lipoprotein-cholesterol (LDL-C) levels, as well as an increase in glutathione peroxidase (GPx) and a recovery in the oxidative stress biomarker, lipid peroxidation (LPx). In addition, histopathological studies of liver, pancreas, kidney, and testes suggested that MTF-loaded LCS-ALG beads improved the degenerative changes in organs of diabetic rats. The LCS-ALG platform for dual encapsulation of MTF achieved sustained MTF delivery and enhancement of bioavailability, as well as the improved biochemical and histopathological characteristics in in vivo studies, opening many other intriguing applications in sustained drug delivery.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 728
Author(s):  
Anroop B. Nair ◽  
Jigar Shah ◽  
Shery Jacob ◽  
Bandar E. Al-Dhubiab ◽  
Vimal Patel ◽  
...  

The reduced therapeutic efficacy of rizatriptan in migraine treatment is primarily due to low oral bioavailability and extensive first pass metabolism. The purpose of this investigation was to optimize the thin mucoadhesive buccal film of rizatriptan and assess the practicability of its development as a potential substitute for conventional migraine treatment. Buccal films (FR1–FR10) were fabricated by a conventional solvent casting method utilizing a combination of polymers (Proloc, hydroxypropyl methylcellulose and Eudragit RS 100). Drug-loaded buccal films (F1–F4) were examined for mechanical, mucoadhesive, swelling and release characteristics. In vivo pharmacokinetics parameters of selected buccal film (F1) in rabbits were compared to oral administration. Films F1–F4 displayed optimal physicomechanical properties including mucoadhesive strength, which can prolong the buccal residence time. A biphasic, complete and higher drug release was seen in films F1 and F4, which followed Weibull model kinetics. The optimized film, F1, exhibited significantly higher (p < 0.005) rizatriptan buccal flux (71.94 ± 8.26 µg/cm2/h) with a short lag time. Film features suggested the drug particles were in an amorphous form, compatible with the polymers used and had an appropriate surface morphology suitable for buccal application. Pharmacokinetic data indicated a significantly higher rizatriptan plasma level (p < 0.005) and Cmax (p < 0.0001) upon buccal film application as compared to oral solution. The observed AUC0–12h (994.86 ± 95.79 ng.h/mL) in buccal treatment was two-fold higher (p < 0.0001) than the control, and the relative bioavailability judged was 245%. This investigation demonstrates the prospective of buccal films as a viable and alternative approach for effective rizatriptan delivery.


Sign in / Sign up

Export Citation Format

Share Document