scholarly journals On the connectivity of the hyperbolicity region of irreducible polynomials

2019 ◽  
Vol 19 (2) ◽  
pp. 231-233
Author(s):  
Mario Denis Kummer

Abstract We give a proof for the fact that an irreducible hyperbolic polynomial has only one pair of hyperbolicity cones. Apart from the use of Bertini’s Theorem the proof is elementary.

2021 ◽  
pp. 1-6
Author(s):  
Jitender Singh ◽  
Sanjeev Kumar

2019 ◽  
Vol 74 (1) ◽  
pp. 36-37
Author(s):  
Franz Lemmermeyer

2016 ◽  
Vol 168 ◽  
pp. 452-471
Author(s):  
Alice Medvedev ◽  
Ramin Takloo-Bighash

2001 ◽  
Vol 14 (2) ◽  
pp. 240-245 ◽  
Author(s):  
F. Ruskey ◽  
C. R. Miers ◽  
J. Sawada

2021 ◽  
Vol 143 (2) ◽  
pp. 66-76
Author(s):  
U.K. Turusbekova ◽  
◽  
S.A. Altynbek ◽  
A.S. Turginbayeva ◽  
L. Mereikhan ◽  
...  

1993 ◽  
pp. 39-68
Author(s):  
Ian F. Blake ◽  
XuHong Gao ◽  
Ronald C. Mullin ◽  
Scott A. Vanstone ◽  
Tomik Yaghoobian

Author(s):  
Mina Ketan Mahanti ◽  
Amandeep Singh ◽  
Lokanath Sahoo

We have proved here that the expected number of real zeros of a random hyperbolic polynomial of the formy=Pnt=n1a1cosh⁡t+n2a2cosh⁡2t+⋯+nnancosh⁡nt, wherea1,…,anis a sequence of standard Gaussian random variables, isn/2+op(1). It is shown that the asymptotic value of expected number of times the polynomial crosses the levely=Kis alson/2as long asKdoes not exceed2neμ(n), whereμ(n)=o(n). The number of oscillations ofPn(t)abouty=Kwill be less thann/2asymptotically only ifK=2neμ(n), whereμ(n)=O(n)orn-1μ(n)→∞. In the former case the number of oscillations continues to be a fraction ofnand decreases with the increase in value ofμ(n). In the latter case, the number of oscillations reduces toop(n)and almost no trace of the curve is expected to be present above the levely=Kifμ(n)/(nlogn)→∞.


Sign in / Sign up

Export Citation Format

Share Document