King type generalization of Baskakov operators based on (𝑝, 𝑞) calculus with better approximation properties

Analysis ◽  
2020 ◽  
Vol 40 (4) ◽  
pp. 163-173
Author(s):  
Lakshmi Narayan Mishra ◽  
Shikha Pandey ◽  
Vishnu Narayan Mishra

AbstractApproximation using linear positive operators is a well-studied research area. Many operators and their generalizations are investigated for their better approximation properties. In the present paper, we construct and investigate a variant of modified (p,q)-Baskakov operators, which reproduce the test function x^{2}. We have determined the order of approximation of the operators via K-functional and second order, the usual modulus of continuity, weighted and statistical approximation properties. In the end, some graphical results which depict the comparison with (p,q)-Baskakov operators are explained and a Voronovskaja type result is obtained.

2016 ◽  
Vol 10 (02) ◽  
pp. 1750028
Author(s):  
Vishnu Narayan Mishra ◽  
Preeti Sharma

The main aim of this study is to obtain statistical approximation properties of these operators with the help of the Korovkin type statistical approximation theorem. Rates of statistical convergence by means of the modulus of continuity and the Lipschitz type maximal function are also established. Our results show that rates of convergence of our operators are at least as fast as classical Durrmeyer type modified Baskakov operators.


2007 ◽  
Vol 44 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Mehmet Özarslan

The main object of this paper is to define the q -Laguerre type positive linear operators and investigate the approximation properties of these operators. The rate of convegence of these operators are studied by using the modulus of continuity, Peetre’s K -functional and Lipschitz class functional. The estimation to the difference | Mn +1, q ( ƒ ; χ )− Mn , q ( ƒ ; χ )| is also obtained for the Meyer-König and Zeller operators based on the q -integers [2]. Finally, the r -th order generalization of the q -Laguerre type operators are defined and their approximation properties and the rate of convergence of this r -th order generalization are also examined.


2004 ◽  
Vol 41 (4) ◽  
pp. 415-429 ◽  
Author(s):  
O. Doğru ◽  
M. A. Özarslan ◽  
F. Taşdelen

In this paper we introduced the general sequence of linear positive operators via generating functions. Approximation properties of these operators are obtained with the help of the Korovkin Theorem. The order of convergence of these operators computed by means of modulus of continuity Peetre’s K-furictiorial and the elements of the usual Lipschitz class. Also we introduce the r-th order generalization of these operators and we evaluate this generalization by the operators defined in this paper. Finally we give some applications to differential equations.


Author(s):  
Prerna Maheshwari Sharma

In the year 2003, Srivastava–Gupta proposed a general family of linear positive operators, having some well-known operators as special cases. They investigated and established the rate of convergence of these operators for bounded variations. In the last decade for modified form of Srivastava–Gupta operators, several other generalizations also have been discussed. In this paper, we discuss the generalized modified Srivastava–Gupta operators considered in [H. M. Srivastava and V. Gupta, A certain family of summation-integral type operators, Math. Comput. Modelling 37(12–13) (2003) 1307–1315], by using iterative combinations in ordinary and simultaneous approximation. We may have better approximation in higher order of modulus of continuity for these operators.


1996 ◽  
Vol 19 (4) ◽  
pp. 667-678 ◽  
Author(s):  
Aleandru Lupaş ◽  
Detlef H. Mache

The intention of this paper is to describe a construction method for a new sequence of linear positive operators, which enables us to get a pointwise order of approximation regarding the polynomial summator operators which have “best” properties of approximation.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Afşin Kürşat Gazanfer ◽  
İbrahim Büyükyazıcı

We introduce positive linear operators which are combined with the Chlodowsky and Szász type operators and study some approximation properties of these operators in the space of continuous functions of two variables on a compact set. The convergence rate of these operators are obtained by means of the modulus of continuity. And we also obtain weighted approximation properties for these positive linear operators in a weighted space of functions of two variables and find the convergence rate for these operators by using the weighted modulus of continuity.


Filomat ◽  
2020 ◽  
Vol 34 (10) ◽  
pp. 3311-3318
Author(s):  
Danyal Soybaş ◽  
Neha Malik

The approximation of difference of two linear positive operators having different basis functions is discussed in the present article. The quantitative estimates in terms of weighted modulus of continuity for the difference of Lupa? operators and the classical ones are obtained, viz. Lupa? and Baskakov operators, Lupa? and Sz?sz operators, Lupa? and Baskakov-Kantorovich operators, Lupa? and Sz?sz-Kantorovich operators.


2019 ◽  
Vol 38 (7) ◽  
pp. 125-136
Author(s):  
Ayhan Esi ◽  
M. Kemal Ozdemir ◽  
Nagarajan Subramanian

In the paper, we investigate rough statistical approximation properties of (p; q)-analogue of Bernstein-Stancu Operators. We study approximation properties based on rough statistical convergence. We also study error bound using modulus of continuity.


2019 ◽  
Vol 35 (1) ◽  
pp. 51-58
Author(s):  
ADRIAN HOLHOS ◽  

In this paper we study some approximation properties of a sequence of positive linear operators defined by means of the powered Baskakov basis. We prove that in the particular case of squared Baskakov basis the operators behave better than the classical Baskakov operators. For this particular case we give also a quantitative Voronovskaya type result.


Sign in / Sign up

Export Citation Format

Share Document