scholarly journals Model of SpO2 signal of the neonate

2019 ◽  
Vol 5 (1) ◽  
pp. 549-552
Author(s):  
Veronika Huttova ◽  
Jakub Rafl ◽  
Knut Möller ◽  
Thomas E. Bachman ◽  
Petr Kudrna ◽  
...  

AbstractThe advantages of automatic control of the fraction of inspired oxygen in neonates have been documented in recently published clinical trials. Many control algorithms are available, but their comparison is missing in the literature. A mathematical model of neonatal oxygen transport could be a useful tool to compare and enhance both automatic control algorithms and manual control of fraction of inspired oxygen. Besides other components, the model of neonatal oxygen transport must include a module linking arterial (SaO2) and peripheral (SpO2) oxygen saturation. The pulse oximeter module must reflect issues of SpO2 measurement typical for clinical practice, such as overestimation of SpO2 over SaO2 documented by several studies, or inaccurate pulse oximeter readings due to high noise. The aim of this study was to describe both the bias between SaO2 and SpO2 and the noise, characteristic for continuous SpO2 recording, for a computer model of oxygenation of a premature infant. The SpO2-SaO2 bias, derived from available clinical data, describes a typical deviation of the SpO2 measurement as a function of the true SaO2 value in three different SaO2 intervals. The SpO2 measurement noise was considered as a random process that affects biased SpO2values at each time point with statistical properties estimated from SpO2 continuous recordings of 5 stable newborns. The results of the study will help to adjust a computer model of neonatal oxygenation to the real situations observed in the clinical practice.

ABOUTOPEN ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 21-23
Author(s):  
Raffaele Di Fenza ◽  
Hedwige Gay ◽  
Martina Favarato ◽  
Isabella Fontana ◽  
Roberto Fumagalli

In severe acute respiratory distress syndrome (ARDS), characterized by the ratio of arterial partial pressure of oxygen over fraction of inspired oxygen (P/F) less than 150 mm Hg, pronation cycles are the only intervention that showed improved survival, in combination with protective ventilation. The physiological advantages of performing pronation cycles, such as the improvement of oxygenation, better tidal volume distribution with increased involvement of dorsal regions, and easier drainage of secretions, overcome the possible complications, that is, endotracheal tube occlusion or misplacement, pressure ulcers, and brachial plexus injury. However, the incidence of complications is dramatically lower in intensive care units with expertise, adopting prone positioning in daily practice. In this video we are proposing step by step an easy and ergonomic technique to perform pronation maneuvers in patients with severe ARDS. Recent literature suggests that a high percentage of these patients are treated without undergoing pronation cycles. The main purpose of this video is to help increase the number of intensive care units worldwide commonly performing pronation cycles in patients that have indications to be pronated, in order to decrease healthcare burden and costs directly caused by ARDS. Proper intensive care unit staff training is fundamental in minimizing the risks associated with the maneuver for both patients and operators; and diffusion of a safe technique encouraging the operators is the second main purpose of this video.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Andrew G. Weber ◽  
Alice S. Chau ◽  
Mikala Egeblad ◽  
Betsy J. Barnes ◽  
Tobias Janowitz

Abstract Background Mechanically ventilated patients with COVID-19 have a mortality of 24–53%, in part due to distal mucopurulent secretions interfering with ventilation. DNA from neutrophil extracellular traps (NETs) contribute to the viscosity of mucopurulent secretions and NETs are found in the serum of COVID-19 patients. Dornase alfa is recombinant human DNase 1 and is used to digest DNA in mucoid sputum. Here, we report a single-center case series where dornase alfa was co-administered with albuterol through an in-line nebulizer system. Methods Demographic and clinical data were collected from the electronic medical records of five mechanically ventilated patients with COVID-19—including three requiring veno-venous extracorporeal membrane oxygenation—treated with nebulized in-line endotracheal dornase alfa and albuterol, between March 31 and April 24, 2020. Data on tolerability and response were analyzed. Results The fraction of inspired oxygen requirements was reduced for all five patients after initiating dornase alfa administration. All patients were successfully extubated, discharged from hospital and remain alive. No drug-associated toxicities were identified. Conclusions Results suggest that dornase alfa will be well-tolerated by patients with severe COVID-19. Clinical trials are required to formally test the dosing, safety, and efficacy of dornase alfa in COVID-19, and several have been recently registered.


2018 ◽  
Vol 36 (11) ◽  
pp. 1142-1149 ◽  
Author(s):  
Frédérique Berger-Caron ◽  
Bruno Piedboeuf ◽  
Geneviève Morissette ◽  
David Simonyan ◽  
Philippe Chétaille ◽  
...  

Background Persistent pulmonary hypertension of the newborn (PPHN) occurs in 10% of neonatal respiratory insufficiency. To selectively reduce pulmonary vascular resistance, several treatments have been tried. Inhaled epoprostenol (iPGI2) has been used for 12 years in our institution for the management of refractory PPHN despite the gaps in the literature to support this use. Objectives The primary objective was to evaluate the efficacy of iPGI2 for PPHN. The secondary objectives were to describe its use in neonates and assess side effects. Study Design This retrospective cohort study included infants < 28 days with PPHN treated with iPGI2 in the neonatal or pediatric intensive care units of our institution between 2004 and 2016. Results We reviewed 43 patient' care episodes (mean gestational age of 36 weeks). This was an extremely ill population with 54% mortality rate. Oxygenation index improved significantly after 12-hour treatment (p = 0.047), with a rebound effect when discontinuing nebulization. By the end of the therapy, the fraction of inspired oxygen had significantly dropped (p = 0.0018). Echocardiographic markers tended to normalize during treatment. No potential side effects were reported. Conclusion In these sick newborns, we observed an improvement in PPHN under iPGI2 without significant adverse effects. To our knowledge, this is the largest neonatal cohort reported to have received iPGI2 for PPHN.


2021 ◽  
Vol 1 (S1) ◽  
pp. s80-s81
Author(s):  
Kelly Cawcutt ◽  
Mark Rupp ◽  
Lauren Musil

Background: Mechanical ventilation is a lifesaving therapy for critically ill patients. Hospitals perform surveillance for the NHSN for ventilator-associated events (VAE) by monitoring mechanically ventilated patients for metrics that are generally thought to be objective and preventable and that lead to poor patient outcomes. The VAE definition is met in a stepwise manner; initially, a ventilator-associated condition (VAC) is triggered with an increase in positive end-expiratory pressure (PEEP, >3 cm H2O) or fraction of inspired oxygen (FIO2, 0.20 or 20 points) after a period of stability or improvement on the ventilator. We believe that many reported VAEs could be avoided by provider and respiratory therapy attention to “knobmanship.” We define knobmanship as knowledge of the VAE definition and trigger points combined with appropriate clinical care for mechanically ventilated patients while avoiding unnecessary triggering of the VAE definition by avoiding small unneeded changes in PEEP or FIO2. Methods: We performed a chart review of 283 patients who had a reported VAE to the NHSN between January 1, 2019, and December 31, 2020. We collected data including type of VAE, VAE triggering criteria, and clinical course. Results: Of the 283 VAEs, 59 were triggered by a PEEP increase from 5 to 8 with stable or decreasing FIO2. Of the 59 VAEs, 33 were VACs, 18 were infection-related ventilator- associated complications (IVACs), and 8 were possible ventilator-associated pneumonia (PVAP). Most of these transient changes in PEEP were deemed clinically unnecessary. A 21% reduction of VAEs reported to the NSHN over the 2-year review period could have been avoided by knobmanship. Conclusions: The VAE definition may often be triggered by provider bias to the ventilator settings rather than what the patient’s clinical-condition requires. Attention to knobmanship may result in substantial decrease in reported VAE.Funding: NoDisclosures: None


2021 ◽  
Author(s):  
◽  
Janine Pilcher

<p>Oxygen-induced elevations in arterial carbon dioxide tension have been demonstrated in patients with chronic obstructive pulmonary disease (COPD), asthma, pneumonia, obesity hypoventilation syndrome (OHS) and acute lung injury. A randomised controlled trial (RCT) in acute exacerbations of COPD (AECOPD) found an over two-fold increase in mortality in patients randomised to high concentration oxygen, compared to titrated oxygen. These findings support guideline recommendations for titration of oxygen therapy to a target oxygen saturation range, reducing the risks of hypoxaemia and hyperoxaemia.   This thesis focuses on the potential implications of oxygen-induced elevations in carbon dioxide in the acute clinical setting. The reviews and studies in the following chapters are all aimed at addressing gaps in knowledge which may have practical implications for oxygen therapy and/or the identification of patients at risk of oxygen-induced hypercapnia in clinical practice.   Numerous studies have demonstrated that high concentration oxygen continues to be administered to acutely unwell patients, despite guideline recommendations for titrated therapy. The first study in this thesis is a clinical audit evaluating the effects of a staff education program, which included face-to-face and written training for ambulance staff. The education program was associated with reduced the rates of high concentration oxygen administration to patients with AECOPD. This suggests active education may increase adherence to oxygen guidelines among clinical staff.   The ability to avoid hypoxaemia and hyperoxaemia during titrated oxygen therapy relies on appropriate lower and upper target oxygen saturation limits, which may be impacted on by pulse oximeter accuracy. The second study in this thesis is a multicentre observational study in which 400 paired pulse oximeter (SpO₂) and arterial blood gas saturation (SaO₂) values were collected in the hospital setting. A SpO₂ <92% had 100% sensitivity for detecting SaO₂<90%. This indicates guideline recommended target oxygen saturations of 92-96% adequately avoid hypoxaemia.  Two studies in OHS patients have investigated the effects of oxygen administration on carbon dioxide, however their designs, including recruitment of stable participants, have limited their generalisability to clinical practice. Therefore, a cross over RCT was conducted in 24 morbidly obese hospital inpatients, randomised to the order they received high concentration and titrated oxygen, each for 60 minutes. The mean change in the transcutaneous partial pressure of carbon dioxide (PtCO₂) from baseline was 3.2 mmHg higher during high concentration oxygen, compared with titrated oxygen (P=0.002). This supports guideline recommendations to titrate oxygen in patients with obesity, regardless of whether they have a diagnosis of OHS or not.  The effects of oxygen in patients with bronchiectasis, neuromuscular disease or kyphoscoliosis are uncertain. Stable patients with these conditions were recruited to double-blind randomised cross over trials administering air and 50% oxygen, each for 30 minutes. A trial was also performed in stable COPD patients for comparison. There was no significant change in PtCO₂ with oxygen therapy in the neuromuscular disease/kyphoscoliosis patients. In the bronchiectasis and COPD patients, oxygen was associated with increased PtCO₂ from baseline compared to air, but the differences were not clinically significant (0.4 mmHg, P=0.012 and 1.3 mmHg, P<0.001, respectively). The lack of a clinically significant PtCO₂ increase in the COPD patients indicated the study findings were unlikely to be generalisable to the clinical setting, and highlights the potential limitations in applying data from stable participants to patients who require acute oxygen therapy.  These studies support current guideline recommendations for titrated oxygen therapy, provide insight into the limits of studying the effects of oxygen in stable participants, and demonstrate the utility of an educational program to aid the translation of research findings into relevant changes in clinical practice.</p>


Sign in / Sign up

Export Citation Format

Share Document