scholarly journals Force estimation from 4D OCT data in a human tumor xenograft mouse model

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Maximilian Neidhardt ◽  
Nils Gessert ◽  
Tobias Gosau ◽  
Julia Kemmling ◽  
Susanne Feldhaus ◽  
...  

AbstractMinimally invasive robotic surgery offer benefits such as reduced physical trauma, faster recovery and lesser pain for the patient. For these procedures, visual and haptic feedback to the surgeon is crucial when operating surgical tools without line-of-sight with a robot. External force sensors are biased by friction at the tool shaft and thereby cannot estimate forces between tool tip and tissue. As an alternative, vision-based force estimation was proposed. Here, interaction forces are directly learned from deformation observed by an external imaging system. Recently, an approach based on optical coherence tomography and deep learning has shown promising results. However, most experiments are performed on ex-vivo tissue. In this work, we demonstrate that models trained on dead tissue do not perform well in in vivo data. We performed multiple experiments on a human tumor xenograft mouse model, both on in vivo, perfused tissue and dead tissue. We compared two deep learning models in different training scenarios. Training on perfused, in vivo data improved model performance by 24% for in vivo force estimation.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuejie Gao ◽  
Bo Li ◽  
Anqi Ye ◽  
Houcai Wang ◽  
Yongsheng Xie ◽  
...  

Abstract Background Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. Methods We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. Results The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. Conclusion The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.


2020 ◽  
Author(s):  
cong fang ◽  
Yahui Liu ◽  
Lanying Chen ◽  
Yingying Luo ◽  
Yaru Cui ◽  
...  

Abstract Background: α-hederin an effective component of Pulsatilla chinensis (Bunge) Regel, Studies showed that α-hederin exert many pharmacological activities, However, the effect of α-hederin on metabolism is still unclear. This study aimed to illuminate the role of α-hederin in glucose metabolism in lung cancer cells and investigate the molecular mechanism of α-hederin. Methods: CCK8 and colony formation assays were employed to assess the anti-proliferative effects induced by α-hederin. Glucose uptake, ATP generation, and reduced lactate production were measured using kits, and an A549 tumor xenograft mouse model of lung cancer was used to assess the in vivo antitumor effect of α-hederin (5, 10 mg/kg). Glycolytic-related key enzymes hexokinase 2 (HK2), glucose transporters 1 (GLUT1), pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDHA), monocarboxylate transporter (MCT4), c-Myc, Hypoxia inducible factor-1α (HIF-1α) and Sirtuin 6 (SIRT6) protein expression were detected by western blotting and immunohistochemical staining and SIRT6 inhibitors was verified in A549 cells. Results: Our results showed that cell proliferation was significantly inhibited by α-hederin in a dose-dependent manner and that α-hederin inhibited glucose uptake and ATP generation and reduced lactate production. Furthermore, α-hederin remarkably inhibited HK2, GLUT1, PKM2, LDHA, MCT4, c-Myc, HIF-1α and activated SIRT6 protein expression. Using inhibitors, we proved that α-hederin inhibits glycolysis by activating SIRT6. Moreover, a tumor xenograft mouse model of lung cancer further confirmed that α-hederin inhibits lung cancer growth via inhibiting glycolysis in vivo. Conclusions: α-hederin inhibits the growth of non-small cell lung cancer A549 cells by inhibiting glycolysis. The mechanism of glycolysis inhibition includes α-hederin activating the expression of the glycolytic related protein SIRT6.


1997 ◽  
Vol 94 (5) ◽  
pp. 1785-1790 ◽  
Author(s):  
D. A. Berk ◽  
F. Yuan ◽  
M. Leunig ◽  
R. K. Jain

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
György Trencsényi ◽  
Teréz Márián ◽  
Imre Lajtos ◽  
Zoltán Krasznai ◽  
László Balkay ◽  
...  

Expression of multidrug pumps including P-glycoprotein (MDR1, ABCB1) in the plasma membrane of tumor cells often results in decreased intracellular accumulation of anticancer drugs causing serious impediment to successful chemotherapy. It has been shown earlier that combined treatment with UIC2 anti-Pgp monoclonal antibody (mAb) and cyclosporine A (CSA) is an effective way of blocking Pgp function. In the present work we investigated the suitability of four PET tumor diagnostic radiotracers including 2-[18F]fluoro-2-deoxy-D-glucose (18FDG),11C-methionine, 3′-deoxy-3′-[18F]fluorothymidine (18F-FLT), and [18F]fluoroazomycin-arabinofuranoside (18FAZA) forin vivofollow-up of the efficacy of chemotherapy in both Pgp positive (Pgp+) and negative (Pgp−) human tumor xenograft pairs raised in CB-17 SCID mice. Pgp+and Pgp−A2780AD/A2780 human ovarian carcinoma and KB-V1/KB-3-1 human epidermoid adenocarcinoma tumor xenografts were used to study the effect of the treatment with an anticancer drug doxorubicin combined with UIC2 and CSA. The combined treatment resulted in a significant decrease of both the tumor size and the accumulation of the tumor diagnostic tracers in the Pgp+tumors. Our results demonstrate that18FDG,18F-FLT,18FAZA, and11C-methionine are suitable PET tracers for the diagnosis andin vivofollow-up of the efficacy of tumor chemotherapy in both Pgp+and Pgp−human tumor xenografts by miniPET.


Blood ◽  
2009 ◽  
Vol 113 (25) ◽  
pp. 6338-6341 ◽  
Author(s):  
Alexander G. Marneros ◽  
Marc E. Grossman ◽  
David N. Silvers ◽  
Sameera Husain ◽  
Gerard J. Nuovo ◽  
...  

Abstract Pralatrexate is a novel antifolate, which shows increased antitumor activity in human tumor xenograft studies in mice compared with methotrexate. We investigated the effects of pralatrexate in a patient with adult T-cell lymphoma/leukemia with significant skin involvement. Atypical lymphocytes in epidermal Pautrier microabscesses were positive for HTLV-1. After the patient presented with leukemic conversion and with worsening of an erythematous generalized papular rash, he received one dose of pralatrexate. Within one week, his skin developed innumerable small erosions limited to the areas of the papular rash, sparing unaffected skin. Here we present in vivo evidence that pralatrexate-induced erosions in skin affected by adult T-cell lymphoma/leukemia are a manifestation of apoptosis of tumor cells infiltrating the epidermis and are not the result of cytotoxicity by pralatrexate on keratinocytes. This distinction is critical and may profoundly influence the clinical decision to continue pralatrexate treatment. Pralatrexate-induced skin erosions may indicate response to treatment.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Tracy C. Kuo ◽  
Amy Chen ◽  
Ons Harrabi ◽  
Jonathan T. Sockolosky ◽  
Anli Zhang ◽  
...  

Abstract Background Signal regulatory protein α (SIRPα) is a myeloid-lineage inhibitory receptor that restricts innate immunity through engagement of its cell surface ligand CD47. Blockade of the CD47–SIRPα interaction synergizes with tumor-specific antibodies and T-cell checkpoint inhibitors by promoting myeloid-mediated antitumor functions leading to the induction of adaptive immunity. Inhibition of the CD47–SIRPα interaction has focused predominantly on targeting CD47, which is expressed ubiquitously and contributes to the accelerated blood clearance of anti-CD47 therapeutics. Targeting SIRPα, which is myeloid-restricted, may provide a differential pharmacokinetic, safety, and efficacy profile; however, SIRPα polymorphisms and lack of pan-allelic and species cross-reactive agents have limited the clinical translation of antibodies against SIRPα. Here, we report the development of humanized AB21 (hAB21), a pan-allelic anti-SIRPα antibody that binds human, cynomolgus monkey, and mouse SIRPα alleles with high affinity and blocks the interaction with CD47. Methods Human macrophages derived from donors with various SIRPα v1 and v2 allelic status were used to assess the ability of hAB21 to enhance phagocytosis. HAB21_IgG subclasses were evaluated for targeted depletion of peripheral blood mononuclear cells, phagocytosis and in vivo efficacy in xenograft models. Combination therapy with anti-PD1/anti-PD-L1 in several syngeneic models was performed. Immunophenotyping of tissues from MC38 tumor-bearing mice treated with AB21 and anti-PD-1 was evaluated. PK, PD and tolerability of hAB21 were evaluated in cynomolgus monkeys. Results SIRPα blockade with hAB21 promoted macrophage-mediated antibody-dependent phagocytosis of tumor cells in vitro and improved responses to rituximab in the Raji human tumor xenograft mouse model. Combined with PD-1/PD-L1 blockade, AB21 improved response rates by facilitating monocyte activation, dendritic cell activation, and T cell effector functions resulting in long term, durable antitumor immunity. In cynomolgus monkeys, hAB21 has a half-life of 5.3 days at 10 mg/kg and complete target occupancy with no hematological toxicity or adverse findings at doses up to 30 mg/kg. Conclusions The in vitro and in vivo antitumor activity of hAB21 broadly recapitulates that of CD47 targeted therapies despite differences in ligand expression, binding partners, and function, validating the CD47–SIRPα axis as a fundamental myeloid checkpoint pathway and its blockade as promising therapeutic intervention for treatment of human malignancies.


2021 ◽  
Vol 9 (10) ◽  
pp. e003148
Author(s):  
Maulasri Bhatta ◽  
Gautam N Shenoy ◽  
Jenni L Loyall ◽  
Brian D Gray ◽  
Meghana Bapardekar ◽  
...  

BackgroundThe human tumor microenvironment (TME) is a complex and dynamic milieu of diverse acellular and cellular components, creating an immunosuppressive environment, which contributes to tumor progression. We have previously shown that phosphatidylserine (PS) expressed on the surface of exosomes isolated from human TMEs is causally linked to T-cell immunosuppression, representing a potential immunotherapeutic target. In this study, we investigated the effect of ExoBlock, a novel PS-binding molecule, on T-cell responses in the TME.MethodsWe designed and synthesized a new compound, (ZnDPA)6-DP-15K, a multivalent PS binder named ExoBlock. The PS-binding avidity of ExoBlock was tested using an in vitro competition assay. The ability of this molecule to reverse exosome-mediated immunosuppression in vitro was tested using human T-cell activation assays. The in vivo therapeutic efficacy of ExoBlock was then tested in two different human tumor xenograft models, the melanoma-based xenomimetic (X-)mouse model, and the ovarian tumor-based omental tumor xenograft (OTX) model.ResultsExoBlock was able to bind PS with high avidity and was found to consistently and significantly block the immunosuppressive activity of human ovarian tumor and melanoma-associated exosomes in vitro. ExoBlock was also able to significantly enhance T cell-mediated tumor suppression in vivo in both the X-mouse and the OTX model. In the X-mouse model, ExoBlock suppressed tumor recurrence in a T cell-dependent manner. In the OTX model, ExoBlock treatment resulted in an increase in the number as well as function of CD4 and CD8 T cells in the TME, which was associated with a reduction in tumor burden and metastasis, as well as in the number of circulating PS+ exosomes in tumor-bearing mice.ConclusionOur results establish that targeting exosomal PS in TMEs with ExoBlock represents a promising strategy to enhance antitumor T-cell responses.


Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1641-1646 ◽  
Author(s):  
David Dingli ◽  
Kah-Whye Peng ◽  
Mary E. Harvey ◽  
Philip R. Greipp ◽  
Michael K. O'Connor ◽  
...  

AbstractThe Edmonston vaccine strain of measles virus (MV-Edm) propagates efficiently in a broad range of human tumor cells, killing them selectively. However, the oncolytic potency of MV-Edm in different human tumor xenograft therapy models is highly variable and there is no convenient way to map the distribution of virus-infected tissues in vivo. To enhance the oncolytic potency of MV-Edm against radiosensitive malignancies and to facilitate noninvasive imaging of infected tissues, we generated a recombinant MV-Edm encoding the human thyroidal iodide symporter (NIS). MV-NIS replicated almost as efficiently as unmodified MV-Edm, and human tumor cells efficiently concentrated radioiodine when infected with MV-NIS. Intratumoral spread of MV-NIS was noninvasively demonstrated by serial gamma-camera imaging of iodine-123 (123I) uptake both in MV-sensitive KAS-6/1 myeloma xenografts, which regressed completely after a single intravenous dose of MV-NIS, and in MM1 myeloma xenografts, which were unresponsive to MVNIS therapy. However, MV-resistant MM1 tumors regressed completely when 131I was administered 9 days after a single intravenous injection of MV-NIS (radiovirotherapy). 131I alone had no effect on MM1 tumor growth. While the potential hematopoietic toxicity of this new therapy requires further evaluation, image-guided radiovirotherapy is a promising new approach to the treatment of multiple myeloma, an incurable but highly radiosensitive plasma cell malignancy. Testing in other radiosensitive cancers is warranted.


Sign in / Sign up

Export Citation Format

Share Document