A formula for the Cartier operator on plane algebraic curves.

1987 ◽  
Vol 1987 (377) ◽  
pp. 49-64 ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 9-16
Author(s):  
Evgeniy Konopatskiy

The paper presents a geometric theory of multidimensional interpolation based on invariants of affine geometry. The analytical description of geometric interpolants is performed within the framework of the mathematical apparatus BN-calculation using algebraic curves that pass through preset points. A geometric interpretation of the interaction of parameters, factors, and the response function is presented, which makes it possible to generalize the geometric theory of multidimensional interpolation in the direction of increasing the dimension of space. The conceptual principles of forming the tree of the geometric interpolant model as a geometric basis for modeling multi-factor processes and phenomena are described.


Topology ◽  
1993 ◽  
Vol 32 (4) ◽  
pp. 845-856 ◽  
Author(s):  
Eugenii Shustin
Keyword(s):  

Nature ◽  
1951 ◽  
Vol 167 (4259) ◽  
pp. 962-962
Author(s):  
H. T. H. PIAGGIO
Keyword(s):  

2009 ◽  
Vol 37 (8) ◽  
pp. 2649-2678 ◽  
Author(s):  
S. B. Bradlow ◽  
O. García-Prada ◽  
V. Mercat ◽  
V. Muñoz ◽  
P. E. Newstead

1994 ◽  
Vol 116 (3) ◽  
pp. 702-708 ◽  
Author(s):  
D. Afolabi ◽  
O. Mehmed

The eigenvalues of rotating blades usually change with rotation speed according to the Stodola-Southwell criterion. Under certain circumstances, the loci of eigenvalues belonging to two distinct modes of vibration approach each other very closely, and it may appear as if the loci cross each other. However, our study indicates that the observable frequency loci of an undamped rotating blade do not cross, but must either repel each other (leading to “curve veering”), or attract each other (leading to “frequency coalescence”). Our results are reached by using standard arguments from algebraic geometry—the theory of algebraic curves and catastrophe theory. We conclude that it is important to resolve an apparent crossing of eigenvalue loci into either a frequency coalescence or a curve veering, because frequency coalescence is dangerous since it leads to flutter, whereas curve veering does not precipitate flutter and is, therefore, harmless with respect to elastic stability.


Sign in / Sign up

Export Citation Format

Share Document