Design and Analysis of a Hybrid Solar and Vibration Energy Harvester

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
M Shafiqur Rahman ◽  
Uttam K. Chakravarty

AbstractThe performance of the small-scale stand-alone energy harvesters can be improved by implementing a hybrid energy harvesting technique. This paper aims at presenting the design and characterization of a hybrid energy harvester that can simultaneously harvest energy from mechanical vibration and solar radiation by combining piezoelectric, electromagnetic, electrostatic, and photovoltaic mechanisms. The hybrid device consists of a small high-efficiency solar panel and a bimorph PZT cantilever beam having a cylindrical tip magnet and two sets of capacitors (comb electrodes) attached on two sides of an ASTM 6061 T-6 Aluminum substrate. All the transducing sections of the configuration are interconnected by a smart hybrid electric circuit having a common optimum load resistance, an energy storage, and a microcontroller to generate and store combined power output when subjected to transverse vibration and solar radiation. The initial bias-voltage input required for the electrostatic mechanism is either obtained from the photovoltaic system or taken from the storage through the microcontroller. Results for the maximum power output are obtained at the fundamental resonance frequency of the vibrating cantilever beam. As the hybrid design allows a combined power harvesting method, more power is generated with better conversion efficiency than those obtained by stand-alone mechanisms. In addition to the power calculation, the study includes a stress and fatigue analysis of the cantilever beam using the finite element method to investigate the stress-life criteria of the hybrid structure.

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1499 ◽  
Author(s):  
Liuqing Wang ◽  
Dibin Zhu

This paper presents a flapping airflow energy harvester based on oscillations of a horizontal cantilever beam facing the direction of airflow. A wing is attached to the free end of a cantilever beam and a bluff body is placed in front of the wing from where vortex falls off, producing vortices under the wing and driving it to oscillate. An electromagnetic transducer is integrated to convert the flow induced vibration into electrical energy. This flapping energy harvester, however, may stop oscillating or vibrate in the second mode under high electrical damping, and thus may be unable to achieve its optimum performance. Simple yet effective mechanical interventions can be applied to the harvester to enhance its power output, i.e., to increase flow velocity and to apply external magnetic interaction. The effect of airflow velocities on output power was investigated experimentally and the results show that the energy harvester scavenges more power in airflow at higher Reynolds numbers (higher flow velocity at R e < 24,000). The external magnetic excitation is achieved though placing one magnet to the wing and another one above the wing to induce a repelling force, aiding the beam to oscillate in high electrical damping. Experimental results show that the power output can be enhanced by 30% when the magnet interaction is properly integrated.


Author(s):  
Claus Linnemann ◽  
Mike W. Coney ◽  
Anthony Price

A novel high efficiency reciprocating piston engine — the isoengine — is predicted to achieve net electrical efficiencies of up to 60% in units of 5 to 20 MWe size. The high efficiency and at the same time a high specific power output are achieved by integrating isothermal compression, recuperative preheating and isobaric combustion into a novel power cycle. The isoengine can utilize distillate oil, natural gas or suitable biofuels. While the first commercial isoengine is envisaged to have a power output of 7 MW, a 3 MW prototype engine is currently being tested. Since compression and combustion are performed in different cylinders, these processes can also be performed at different times such that the isoengine can be used to create a highly efficient small-scale compressed air energy storage (CAES) system. In such configuration, the engine can operate at more than 140% nominal load for a limited time, which depends on the air storage capacity.


2013 ◽  
Vol 04 (06) ◽  
pp. 32-38 ◽  
Author(s):  
Atsushi Yona ◽  
Tomonobu Senjyu ◽  
Toshihisa Funabashi ◽  
Paras Mandal ◽  
Chul-Hwan Kim

2021 ◽  
Author(s):  
Christopher Beach ◽  
Alex Casson

Energy harvesting from human motion can reduce reliance on battery recharging in wearable devices and lead to improved adherence. However, to date, studies estimating energy harvesting potential have largely focused on small scale, healthy, population groups in laboratory settings rather than free-living environments with population level participant numbers. Here, we present the largest scale investigation into energy harvesting potential by utilising the activity data collected in the UK Biobank from over 67,000 participants. This paper presents detailed stratification into how the day of the week and participant age affect harvesting potential, as well as how the presence of conditions (such as diabetes, which we investigate here), may affect the expected energy harvester output. We process accelerometery data using a kinetic energy harvester model to investigate power output at a high temporal resolution. Our results identify key differences between the times of day when the power is available and an inverse relationship between power output and participant age. We also identify that the presence of diabetes substantially reduces energy harvesting output, by over 21%. The results presented highlight a key challenge in wearable energy harvesting: that wearable devices aim to monitor health and wellness, and energy harvesting aims to make devices more energy autonomous, but the presence of medical conditions may lead to substantially lower energy harvesting potential. The findings indicate how it is challenging to meet the required power budget to monitor diseases when energy autonomy is a goal.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 395 ◽  
Author(s):  
Huicong Liu ◽  
Jiankang Zhang ◽  
Qiongfeng Shi ◽  
Tianyiyi He ◽  
Tao Chen ◽  
...  

A hybrid energy harvester is presented in this paper to harvest energy from water flow motion and temperature difference in an irrigating pipe at the same time. The harvester is based on the integration of thermoelectric and electromagnetic mechanisms. To harvest the water flow motion, a turbine fan with magnets that are attached on the blades is placed inside of the water pipe. Multiple coils turn the water flow energy into electricity with the rotation of the turbine. The thermoelectric generators (TEGs) are attached around the pipe, so as to harvest energy due to temperature difference. For a maximum temperature difference of 55 °C (hot side 80 °C and room temperature 25 °C), twelve serial-connected TEGs can generate voltage up to 0.346 V. Under a load resistance of 20 Ώ, the power output of 1.264 mW can be achieved. For a maximum water flow rate of 49.9 L/min, the electromagnetic generator (EMG) can produce an open circuit voltage of 0.911 V. The EMG can be potentially used as a water flow meter due to the linear relationship between water flow rate and output voltage. Under the joint action of TEG and EMG, the maximum terminal voltage for TEG is 66 mV and for EMG is 241 mV at load resistances of 10 and 100 Ώ, respectively, resulting in a corresponding power output of 0.435 and 0.584 mW.


Author(s):  
Muhammad Sani ◽  
Abdulmumin Sule

Metrological parameters plays significant role on the performance of solar panels in electrical power generation. To ascertain the extent to which ambient temperature, temperature of the panels, solar radiation were measured, recorded and analyzed at half-hour interval for five days, at the same period two solar panels were subjected to test, one being connected to a system of cooling leaving the other untouched. Measurement of both the output current and voltage were made from which the power output was calculated. The result shows that the power output was increasing as the solar radiation increased, which is clear indication that the entire photovoltaic process depend on the radiation intensity and environmental conditions. It was also observed that the efficiency of the solar panel with cooling system is slightly greater than that without cooling system. The efficiency and energy output of both solar panels were determined to be 15%, 13% and 477kWh, 449kWh respectively. The difference of 28kWh is not supposed to be neglected, because considering the difference of many days and many panels cannot be neglected. Also few approaches that have been proposed to reduce the effect of temperature on the solar photovoltaic system by choosing the appropriate configurations, by mounted on free standing frames, photovoltaic thermal collectors and building integrated photovoltaic arrays, respectively


2014 ◽  
Vol 705 ◽  
pp. 263-267
Author(s):  
Sandro Nizetic ◽  
Roko Gizdic ◽  
Ankit Yadav ◽  
Miro Bugarin

In this paper, a design of a specific hybrid energy system is elaborated for small scale applications in building facilities of residential or commercial purpose. The energy system is assembled from existing market available technologies that include implementation of a heat pump technology, photovoltaic system and of a standard accumulation boiler for the preparation of hot water. The developed energy system is assumed to be used in mild climates where a heat pump system can be efficiently used throughout the year. According to the gained experimental results the coefficient of the performance for the cooling mode can be expected between 5.0 and 6.0, which prove that the proposed system is highly energy efficient. The developed energy system can cover both cooling and heating demands and also demands for domestic hot water and it represents a totally renewable energy system.


2021 ◽  
Author(s):  
Christopher Beach ◽  
Alex Casson

Energy harvesting from human motion can reduce reliance on battery recharging in wearable devices and lead to improved adherence. However, to date, studies estimating energy harvesting potential have largely focused on small scale, healthy, population groups in laboratory settings rather than free-living environments with population level participant numbers. Here, we present the largest scale investigation into energy harvesting potential by utilising the activity data collected in the UK Biobank from over 67,000 participants. This paper presents detailed stratification into how the day of the week and participant age affect harvesting potential, as well as how the presence of conditions (such as diabetes, which we investigate here), may affect the expected energy harvester output. We process accelerometery data using a kinetic energy harvester model to investigate power output at a high temporal resolution. Our results identify key differences between the times of day when the power is available and an inverse relationship between power output and participant age. We also identify that the presence of diabetes substantially reduces energy harvesting output, by over 21%. The results presented highlight a key challenge in wearable energy harvesting: that wearable devices aim to monitor health and wellness, and energy harvesting aims to make devices more energy autonomous, but the presence of medical conditions may lead to substantially lower energy harvesting potential. The findings indicate how it is challenging to meet the required power budget to monitor diseases when energy autonomy is a goal.


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Sign in / Sign up

Export Citation Format

Share Document