Hankel determinants for starlike and convex functions associated with sigmoid functions

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Amina Riaz ◽  
Mohsan Raza ◽  
Derek K. Thomas

Abstract This paper is concerned with Hankel determinants for starlike and convex functions related to modified sigmoid functions. Sharp bounds are given for second and third Hankel determinants.

Author(s):  
Bogumiła Kowalczyk ◽  
Adam Lecko

AbstractIn the present paper, we found sharp bounds of the second Hankel determinant of logarithmic coefficients of starlike and convex functions of order $$\alpha $$ α .


2020 ◽  
Vol 4 (2) ◽  
pp. 1-14
Author(s):  
Pardeep Kaur ◽  
◽  
Sukhwinder Singh Billing ◽  

2020 ◽  
Vol 70 (4) ◽  
pp. 849-862
Author(s):  
Shagun Banga ◽  
S. Sivaprasad Kumar

AbstractIn this paper, we use the novel idea of incorporating the recently derived formula for the fourth coefficient of Carathéodory functions, in place of the routine triangle inequality to achieve the sharp bounds of the Hankel determinants H3(1) and H2(3) for the well known class 𝓢𝓛* of starlike functions associated with the right lemniscate of Bernoulli. Apart from that the sharp bound of the Zalcman functional: $\begin{array}{} |a_3^2-a_5| \end{array}$ for the class 𝓢𝓛* is also estimated. Further, a couple of interesting results of 𝓢𝓛* are also discussed.


Author(s):  
Young Jae Sim ◽  
Adam Lecko ◽  
Derek K. Thomas

AbstractLet f be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1 \}$$ D = { z ∈ C : | z | < 1 } , and $${{\mathcal {S}}}$$ S be the subclass of normalized univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$ f ( z ) = z + ∑ n = 2 ∞ a n z n for $$z\in {\mathbb {D}}$$ z ∈ D . We give sharp bounds for the modulus of the second Hankel determinant $$ H_2(2)(f)=a_2a_4-a_3^2$$ H 2 ( 2 ) ( f ) = a 2 a 4 - a 3 2 for the subclass $$ {\mathcal F_{O}}(\lambda ,\beta )$$ F O ( λ , β ) of strongly Ozaki close-to-convex functions, where $$1/2\le \lambda \le 1$$ 1 / 2 ≤ λ ≤ 1 , and $$0<\beta \le 1$$ 0 < β ≤ 1 . Sharp bounds are also given for $$|H_2(2)(f^{-1})|$$ | H 2 ( 2 ) ( f - 1 ) | , where $$f^{-1}$$ f - 1 is the inverse function of f. The results settle an invariance property of $$|H_2(2)(f)|$$ | H 2 ( 2 ) ( f ) | and $$|H_2(2)(f^{-1})|$$ | H 2 ( 2 ) ( f - 1 ) | for strongly convex functions.


2007 ◽  
Vol 20 (12) ◽  
pp. 1218-1222 ◽  
Author(s):  
Osman Altıntaş ◽  
Hüseyin Irmak ◽  
Shigeyoshi Owa ◽  
H.M. Srivastava

2011 ◽  
Vol 218 (3) ◽  
pp. 667-672 ◽  
Author(s):  
Abeer O. Badghaish ◽  
Rosihan M. Ali ◽  
V. Ravichandran

2016 ◽  
Vol 66 (1) ◽  
Author(s):  
G. Murugusundaramoorthy ◽  
K. Thilagavathi

AbstractThe main object of this present paper is to investigate the problem of majorization of certain class of analytic functions of complex order defined by the Dziok-Raina linear operator. Moreover we point out some new or known consequences of our main result.


2012 ◽  
Vol 45 (4) ◽  
Author(s):  
Halit Orhan ◽  
Erhan Deniz ◽  
Murat Çağlar

AbstractIn this present investigation, authors introduce certain subclasses of starlike and convex functions of complex order


Sign in / Sign up

Export Citation Format

Share Document