CPW-Fed 8-Shaped Monopole Antenna for Ultra Wideband Applications

Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Sarthak Singhal ◽  
Amit Kumar Singh

AbstractA CPW-fed 8-shaped monopole antenna for ultra wideband applications is presented. It consists of a 8-shaped monopole and two quarter elliptical coplanar waveguide ground planes. An impedance bandwidth from 5.4 GHz to 23.83 GHz is achieved. The radiation patterns are observed to be omnidirectional and bidirectional in E-and H-plane respectively at lower resonances. At higher frequencies, the radiation patterns are found to be nearly omnidirectional in both planes. The group delay variation is also observed to be constant in the operating frequency range. A good agreement is found between the simulation and experimental results. The designed antenna structure has miniaturized dimensions and wider bandwidth as compared to other already reported monopole structures.

2015 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Sarthak Singhal ◽  
Ankit Pandey ◽  
Amit Kumar Singh

A coplanar waveguide (CPW)-fed circular-shaped fractal antenna with third iterative orthogonal elliptical slot for ultra-wideband applications is presented. The bandwidth is enhanced by using successive iterations of radiating patch, CPW feedline, and tapered ground plane. An impedance bandwidth of 2.9–20.6 GHz is achieved. The designed antenna has omnidirectional radiation patterns along with average peak realized gain of 3.5 dB over the entire frequency range of operation. A good agreement is observed between the simulated and experimental results. This antenna structure has the advantages of miniaturized size and wide bandwidth in comparison to previously reported fractal structures.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 453
Author(s):  
Sharadindu Gopal Kirtania ◽  
Bachir Adham Younes ◽  
Abdul Rakib Hossain ◽  
Tutku Karacolak ◽  
Praveen Kumar Sekhar

In this article, an inkjet-printed circular-shaped monopole ultra-wideband (UWB) antenna with an inside-cut feed structure was implemented on a flexible polyethylene terephthalate (PET) substrate. The coplanar waveguide (CPW)-fed antenna was designed using ANSYS high-frequency structural simulator (HFSS), which operates at 3.04–10.70 GHz and 15.18–18 GHz (upper Ku band) with a return loss < −10 dB and a VSWR < 2. The antenna, with the dimensions of 47 mm × 25 mm × 0.135 mm, exhibited omnidirectional radiation characteristics over the entire impedance bandwidth, with an average peak gain of 3.94 dBi. The simulated antenna structure was in good agreement with the experiment’s measured results under flat and bending conditions, making it conducive for flexible and wearable Internet of things (IoT) applications.


Frequenz ◽  
2016 ◽  
Vol 70 (3-4) ◽  
Author(s):  
Sarthak Singhal ◽  
Nand Kishor Verma ◽  
Amit Kumar Singh

AbstractA hex-sided rounded dipole antenna (HSRDA) for UWB applications is presented. It is designed by the addition of semi-elliptical patch sections at the edges of a square bow-tie antenna. The antenna structure is fed by a modified microstrip feedline for better impedance matching. An impedance bandwidth of 2.9–11.4 GHz is achieved. The antenna structure has quasi omnidirectional radiation patterns and reasonable gain over the same frequency range. A good agreement between the experimental and simulation results is observed. The proposed antenna structure has miniaturized size for the same bandwidth as compared to already reported antenna structures.


This research article gives a detailed insight of the design, simulation of a compact circular shaped microstrip patch antenna that is fed using a coplanar waveguide feed (CPW for practical wireless communication applications). The antenna is typically designed for Ultra wideband (1.46-6GHz), Bluetooth (2.4GHz), ZIGBEE (2.4GHz), WLAN (5.15- 5.35 GHz and 5.725- 5.825), Wi-Fi (2.4-2.485GHz) and HIPERLAN-2(5.15 - 5.35 GHz and 5.470 -5.725GHz) wireless applications with stop band characteristics for the H (partial C band). The proposed antenna has an overall packaged structure dimensions of 78 x75 x1.605 mm3 and is fabricated on FR4 substrate as a circular patch antenna with a coplanar ground .The commercially available laminate FR4 substrate that is used has a dielectric constant of 4.4, height of 1.6mm and a loss tangent of 0.0024.The prospective antenna shows a simulated impedance bandwidth of 4.54 GHz. The coplanar waveguide feeding used with this antenna helps in improving antenna performance in terms of its impedance bandwidth as this geometry helps in creating multiple current loops at the antenna structure, thereby exciting nearby frequencies that merge to show a broadband of operation. The antenna’s operational bandwidth is also improved by the concept of modified ground, in which triangular and rectangular shapes are added symmetrically on both sides of ground plane that provide a better fringing effect and hence an improved bandwidth.


Author(s):  
Rowdra Ghatak ◽  
Swapan K. Ghoshal ◽  
Durbadal Mondal ◽  
Anup K. Bhattacharjee

A dual wideband design of Sierpinski carpet fractal-shaped planar monopole antenna with a coplanar waveguide (CPW) feed is proposed in this letter. Wide impedance bandwidth of 22% at lower resonance from 4.88 to 6.08 GHz and 41.7% at higher one, which ranges from 9.5 to 14.5 GHz, is obtained. Measured realized antenna gain is around 5 dBi at the lower band centered around 5.5 GHz and are around 4.5 dBi at the higher band. A fabricated prototype is developed with good agreement between simulation and measurement.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 697 ◽  
Author(s):  
Preeti Pannu ◽  
Manoj K. Pandey

A monopole antenna with a simple structure, planar geometry, and a small square size is proposed, in this paper. The proposed antenna structure consists of the slot with I-shaped geometry in the radiating patch surrounded by a C-geometry slot. Further, the structure contains a parasitic I-shaped element in the square radiating patch. The embedded slot with C-shaped geometry and parasitic I-shaped element accounts for the dual-band notch nature in the proposed antenna structure. The simulated and measured results are compared for the proposed antenna structure, which is in good agreement and also, band rejection capabilities of the proposed antenna are investigated.  


2015 ◽  
Vol 8 (2) ◽  
pp. 341-346 ◽  
Author(s):  
Idris Messaoudene ◽  
Tayeb A. Denidni ◽  
Abdelmadjid Benghalia

In this paper, we propose a novel integrated ultra-wideband (UWB) monopole antenna with dual-band antenna. The antenna consists of planar rectangular with semi-elliptical base and a rectangular dielectric resonator antenna (DRA) with dual-band operation. Both of them are excited via coplanar waveguide (CPW) lines. The experimental measurements show that the planar monopole provides an impedance bandwidth between 2.44 and 11.9 GHz which largely covers the entire UWB spectrum, and the rectangular DRA operates at two bands; 5.3–6.2 and 8.5–9.4 GHz. Additionally, the proposed structure ensures low mutual coupling between the two ports (with S21 less than −20 dB in the whole operating frequency band). The measured and numerical results show a good agreement.


2015 ◽  
Vol 8 (7) ◽  
pp. 1077-1084
Author(s):  
Sandeep K. Palaniswamy ◽  
Kanagasabai Malathi ◽  
Arun K. Shrivastav

This paper presents design, fabrication, and testing of a palm tree structured monopole antenna for wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 4 to 10.4 GHz. Palm tree antenna of compact size 23 mm × 20 mm is designed and fabricated on an FR4 substrate of thickness 1.6 mm. To validate the design, a mathematical relationship between the parameters of the palm tree geometry and the lower cut-off frequency has been established. Parametric study has been carried out to obtain optimum wideband characteristics. The prototype is experimentally validated for the band 4–10.4 GHz within ultra-wideband operations. Transfer function, impulse response and Group delay has been plotted in order to address the time domain characteristics of the palm tree antenna with fidelity factor values. The possible applications cover 5.2–5.8 GHz WLAN, C-band operations, 5.5 GHz WiMAX, and Wireless USB.


2011 ◽  
Vol 10 ◽  
pp. 1469-1472 ◽  
Author(s):  
Robert A. Moody ◽  
Satish K. Sharma

An ultrawideband (UWB) coplanar waveguide (CPW)-fed pentagon-shaped planar monopole antenna (PMA) backed by a novel pyramidal-shaped cavity is presented that provides directional radiation patterns. The pyramidal-shaped cavity reflector is placed at a fixed spacing from the UWB monopole antenna to provide impedance and radiation performance over 110% (3.1-10.6 GHz) frequency band. The PMA itself on a foam substrate provides stable gain variation within 3 dB over an impedance bandwidth (w.r.t.S11&lt;; -10 dB) of 120% (3-12 GHz). The proposed cavity-backed PMA prototype antenna was fabricated, and experimental verification was performed for impedance matching and radiation patterns. The measured results show reasonable agreement with the simulated ones.


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Sahar Chagharvand ◽  
M. R. B. Hamid ◽  
M. R. Kamarudin ◽  
Mohsen Khalily

This paper presents a single layer planar slot antenna for dual band operation. The antenna is fed by a coplanar waveguide (CPW) with two inverted C-shaped resonators to achieve the dual band operation. The impedance bandwidth for ǀS11ǀ < -10dB is 14% in lower band and 7% in higher band. The antenna prototype’s electromagnetic performance, impedance bandwidth, radiation pattern, and antenna gain were measured. The proposed configuration offers a relatively compact, easy to fabricate and dual band performance providing gain between 2 and 4 dBi. The designed antenna has good dual bandwidth covering 3.5 WiMAX and 5.8 WLAN tasks. Experimental and numerical results also showed good agreement after comparison.


Sign in / Sign up

Export Citation Format

Share Document