A note on the nonlinear Volterra integral equation for the early exercise boundary

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Malkhaz Shashiashvili ◽  
Besarion Dochviri ◽  
Giorgi Lominashvili

AbstractIn this paper, we study the nonlinear Volterra integral equation satisfied by the early exercise boundary of the American put option in the one-dimensional diffusion model for a stock price with constant interest rate and constant dividend yield and with a local volatility depending on the current time t and the current stock price S. In the classical Black–Sholes model for a stock price, Theorem 4.3 of [S. D. Jacka, Optimal stopping and the American put, Math. Finance 1 1991, 2, 1–14] states that if the family of integral equations (parametrized by the variable S) holds for all {S\leq b(t)} with a candidate function {b(t)}, then this {b(t)} must coincide with the American put early exercise boundary {c(t)}. We generalize Peskir’s result [G. Peskir, On the American option problem, Math. Finance 15 2005, 1, 169–181] to state that if the candidate function {b(t)} satisfies one particular integral equation (which corresponds to the upper limit {S=b(t)}), then all other integral equations (corresponding to S, {S\leq b(t)}) will be automatically satisfied by the same function {b(t)}.

2010 ◽  
Vol 24 (32) ◽  
pp. 6235-6258 ◽  
Author(s):  
SALIH YALÇINBAŞ ◽  
KÜBRA ERDEM

The purpose of this study is to implement a new approximate method for solving system of nonlinear Volterra integral equations. The technique is based on, first, differentiating both sides of integral equations n times and then substituting the Taylor series the unknown functions in the resulting equation and later, transforming to a matrix equation. By merging these results, a new system which corresponds to a system of linear algebraic equations is obtained. The solution of this system yields the Taylor coefficients of the solution function. Some numerical results are also given to illustrate the efficiency of the method.


2010 ◽  
Vol 51 (4) ◽  
pp. 430-448 ◽  
Author(s):  
M. LAUKO ◽  
D. ŠEVČOVIČ

AbstractWe present qualitative and quantitative comparisons of various analytical and numerical approximation methods for calculating a position of the early exercise boundary of American put options paying zero dividends. We analyse the asymptotic behaviour of these methods close to expiration, and introduce a new numerical scheme for computing the early exercise boundary. Our local iterative numerical scheme is based on a solution to a nonlinear integral equation. We compare numerical results obtained by the new method to those of the projected successive over-relaxation method and the analytical approximation formula recently derived by Zhu [‘A new analytical approximation formula for the optimal exercise boundary of American put options’, Int. J. Theor. Appl. Finance9 (2006) 1141–1177].


2004 ◽  
Vol 07 (03) ◽  
pp. 303-335 ◽  
Author(s):  
S. Z. Levendorskiǐ

We consider the American put with finite time horizon T, assuming that, under an EMM chosen by the market, the stock returns follow a regular Lévy process of exponential type. We formulate the free boundary value problem for the price of the American put, and develop the non-Gaussian analog of the method of lines and Carr's randomization method used in the Gaussian option pricing theory. The result is the (discretized) early exercise boundary and prices of the American put for all strikes and maturities from 0 to T. In the case of exponential jump-diffusion processes, a simple efficient pricing scheme is constructed. We show that for many classes of Lévy processes, the early exercise boundary is separated from the strike price by a non-vanishing margin on the interval [0, T), and that as the riskless rate vanishes, the optimal exercise price goes to zero uniformly over the interval [0, T), which is in the stark contrast with the Gaussian case.


2021 ◽  
Vol 24 (01) ◽  
pp. 2150004
Author(s):  
YERKIN KITAPBAYEV

We present three models of stock price with time-dependent interest rate, dividend yield, and volatility, respectively, that allow for explicit forms of the optimal exercise boundary of the finite maturity American put option. The optimal exercise boundary satisfies the nonlinear integral equation of Volterra type. We choose time-dependent parameters of the model so that the integral equation for the exercise boundary can be solved in the closed form. We also define the contracts of put type with time-dependent strike price that support the explicit optimal exercise boundary.


Sign in / Sign up

Export Citation Format

Share Document