scholarly journals Structural characteristics of plant cell wall elucidated by solution-state 2D NMR spectroscopy with an optimized procedure

2020 ◽  
Vol 9 (1) ◽  
pp. 650-663
Author(s):  
Wanwan Wang ◽  
Jibao Cai ◽  
Zhenyu Xu ◽  
Yi Zhang ◽  
Fanchao Niu ◽  
...  

AbstractA method was developed for rapid qualitative determination of lignocellulose in the tobacco cell wall by utilizing 2D heteronuclear single quantum coherence NMR spectra (2D HSQC NMR). Traditional methods for analyzing the structure of lignocellulose involve many steps of separation and extraction, which is labor-intensive. In this work, the whole cell wall was milled and dissolved in deuterium solvent. The solvent dimethylsulfoxide (DMSO-d6) containing hexamethylphosphoramide (HMPA-d18) enhanced swelling of the sample and gave high-resolution spectra. The tobacco samples are ball milled at different ball milling times, and the state of the particles is observed through an electron microscope, and then the probability of the particles being less than 5 µm is counted. Through the comparison of the abundance and integration of the peak signals in the spectra under different transmittances, it was determined that when the milling time was 6 h, the quality of the NMR spectra was the best. The optimum conditions of characterizing tobacco structure were DMSO-d6/HMPA-d18 solution and 6 h milling time. Under these conditions, complete representation of the structure of lignocellulose and simplified process could be achieved.

2015 ◽  
Vol 125 (3) ◽  
pp. 427-436 ◽  
Author(s):  
Yang Lin ◽  
Jennifer Y. King ◽  
Steven D. Karlen ◽  
John Ralph

2004 ◽  
Vol 82 (8) ◽  
pp. 1074-1088 ◽  
Author(s):  
R. Larry Peterson ◽  
Hugues B Massicotte

The roots or other subterranean organs of most plants develop symbioses, mycorrhizas, with fungal symbionts. Historically, mycorrhizas have been placed into seven categories based primarily on structural characteristics. A new category has been proposed for symbiotic associations of some leafy liverworts. An important feature of mycorrhizas is the interface involved in nutrient exchange between the symbionts. With the exception of ectomycorrhizas, in which fungal hyphae remain external to plant cell walls, all mycorrhizas are characterized by fungal hyphae breaching cell walls but remaining separated from the cell cytoplasm by a plant-derived membrane and an interfacial matrix that forms an apoplastic compartment. The chemical composition of the interfacial matrix varies in complexity. In arbuscular mycorrhizas (both Arum-type and Paris-type), molecules typical of plant primary cell walls (i.e., cellulose, pectins, β-1,3-glucans, hydroxyproline-rich glycoproteins) are present. In ericoid mycorrhizas, only rhamnogalacturonans occur in the interfacial matrix surrounding intracellular hyphal complexes. The matrix around intracellular hyphal complexes in orchid mycorrhizas lacks plant cell wall compounds until hyphae begin to senesce, then molecules similar to those found in primary cell walls are deposited. The interfacial matrix has not been studied in arbutoid mycorrhizas and ectendomycorrhizas. In ectomycorrhizas, the apoplastic interface consists of plant cell wall and fungal cell wall; alterations in these may enhance nutrient transfer. In all mycorrhizas, nutrients must pass into the symplast of both partners at some point, and therefore current research is exploring the nature of the opposing membranes, particularly in relation to phosphorus and sugar transporters.Key words: interface, apoplastic compartment, Hartig net, arbuscule, intracellular complex, nutrient exchange.


2009 ◽  
Vol 47 (6) ◽  
pp. 532-536 ◽  
Author(s):  
Muhammad Imran ◽  
Muhammad Ibrahim ◽  
Naheed Riaz ◽  
Abdul Malik

1989 ◽  
Vol 111 (23) ◽  
pp. 8754-8756 ◽  
Author(s):  
Reinhard Benn ◽  
Eckhard Joussen ◽  
Herbert Lehmkuhl ◽  
Fernando Lopez Ortiz ◽  
Anna Rufinska

1991 ◽  
Vol 1991 (12) ◽  
pp. 1337-1341 ◽  
Author(s):  
Horst Kessler ◽  
Siggi Mronga ◽  
Bernhard Kutscher ◽  
Arndt Müller ◽  
William S. Sheldrick

Sign in / Sign up

Export Citation Format

Share Document