Influence of veneer thickness, mat formation and resin content on some properties of novel poplar scrimbers

Holzforschung ◽  
2018 ◽  
Vol 72 (8) ◽  
pp. 673-680 ◽  
Author(s):  
Yahui Zhang ◽  
Yue Qi ◽  
Yuxiang Huang ◽  
Yanglun Yu ◽  
Yanjun Liang ◽  
...  

AbstractThick poplar veneers (4–8 mm) have been finely fluffed to manufacture novel scrimbers by two paving ways, namely by random and laminated mat formations. The following properties of the scrimbers were evaluated: modulus of rupture (MOR) via static bending, modulus of elasticity (MOE), compression strength (CS), shear strength (SS), water absorption rate, thickness swelling rate (TSR) and width swelling rate. The results show that utilization of fluffed thicker veneers reduced the mechanical properties to a certain extent. The TSR of the scrimber was first improved and then weakened by increasing the thickness of the veneers. The scrimber prepared from 6-mm-thick veneers showed the best waterproof performance. The random and laminated mat formations affected the surface texture significantly but the mechanical properties and dimensional stability to a lesser extent. With increasing resin content, the waterproof performance of the scrimbers was improved, which was not otherwise expected. The mechanical properties remained essentially unchanged except for the shear strength.

2019 ◽  
Vol 8 (4) ◽  
pp. 6808-6812

This study investigate the effect of the board thickness and resin content on the properties of particleboard. Single-layered sawmill wastes and rubberwood particleboards bonded with urea formaldehyde (UF) resins were manufactured. The boards were fabricated with three different board thicknesses (15, 18 and 25mm) at three different resin contents (7, 8 and 9%). The boards produced were evaluated for their modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding (IB) and thickness swelling (TS) in accordance with the European Standards. Board thickness does affect the mechanical properties of particleboard. The study revealed that thinner boards gave higher MOE, MOR, IB and TS. No significant effects were found among three resin contents for MOE, MOR, IB and TS. It can be concluded that the particleboard made from mix tropical wood from sawmill waste and with rubberwood were suitable for particleboard manufacturing.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 194 ◽  
Author(s):  
Mohammad Derikvand ◽  
Nathan Kotlarewski ◽  
Michael Lee ◽  
Hui Jiao ◽  
Gregory Nolan

The use of fast-growing plantation eucalypt (i.e., pulpwood eucalypt) in the construction of high-value structural products has received special attention from the timber industry in Australia and worldwide. There is still, however, a significant lack of knowledge regarding the physical and mechanical properties of the lumber from such plantation resources as they are mainly being managed to produce woodchips. In this study, the physical and mechanical properties of lumber from a 16-year-old pulpwood Eucalyptus nitens H.Deane & Maiden resource from the northeast of Tasmania, Australia was evaluated. The tests were conducted on 318 small wood samples obtained from different logs harvested from the study site. The tested mechanical properties included bending modulus of elasticity (10,377.7 MPa) and modulus of rupture (53 MPa), shear strength parallel (5.5 MPa) and perpendicular to the grain (8.5 MPa), compressive strength parallel (42.8 MPa) and perpendicular to the grain (4.1 MPa), tensile strength perpendicular to the grain (3.4 MPa), impact bending (23.6 J/cm2), cleavage (1.6 kN) and Janka hardness (23.2 MPa). Simple linear regression models were developed using density and moisture content to predict the mechanical properties. The variations in the moisture content after conventional kiln drying within randomly selected samples in each test treatment were not high enough to significantly influence the mechanical properties. A relatively high variation in the density values was observed that showed significant correlations with the changes in the mechanical properties. The presence of knots increased the shear strength both parallel and perpendicular to the grain and significantly decreased the tensile strength of the lumber. The results of this study created a profile of material properties for the pulpwood E. nitens lumber that can be used for numerical modelling of any potential structural product from such a plantation resource.


2014 ◽  
Vol 896 ◽  
pp. 562-565 ◽  
Author(s):  
Ragil Widyorini ◽  
Ari Puspa Yudha ◽  
Ramadhanu Isnan ◽  
Ali Awaluddin ◽  
Tibertius Agus Prayitno ◽  
...  

This research focused on physical and mechanical properties of biocomposite made from bamboo and citric acid as natural binder. Bamboo particles was mixed with citric acid at 0 – 40 wt% resin content based on air-dried particles and each mixture was hot pressed at 180 °C for 10 min. The result showed that addition of citric acid could improve significantly the physical and mechanical properties of particleboard. The thickness swelling was 50 % for bamboo binderless particleboard (0 wt%), whereas it decreased to 7 % under a resin content of 10 wt%. The optimum resin content in this study was 30 wt%, while the modulus of rupture dan the modulus of elasticity were 14 MPa and 4.5 GPa, respectively. The ester linkages were detected by Fourier transform infrared spectroscopy, indicating that carboxyl groups from citric acid reacted with hydroxyl groups from bamboo to produce better properties of particleboard, especially its dimensional stability. Based on these results, it was concluded that citric acid could be as a potential natural binder for bamboo particleboard.


2014 ◽  
Vol 1025-1026 ◽  
pp. 42-45 ◽  
Author(s):  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Rosane A.G. Battistelle ◽  
...  

This study aimed, with the aid of analysis of variance (ANOVA), to investigate and quantify the influence of moisture ranging between 12% and over 30% (fiber saturation) on the mechanical properties: strength and modulus of elasticity in compression and in tension parallel to grain; modulus of rupture and modulus of elasticity in static bending; shear strength parallel to grain considering wood species Ipê (Tabebuia sp) and Angelim Araroba (Vataireopsis araroba). Tests were performed according to the assumptions and calculating methods Brazilian standard ABNT NBR 7190, Anexx B, totalizing 400 tests. Results of ANOVA revealed a significant reduction (16% on average) for mechanical properties wood due to the increase in moisture content from 12% to over 30% (fiber saturation). The same behavior also occurred when assembly containing the two species was considered.


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayang Archila ◽  
Farah Diba ◽  
Dina Setyawati ◽  
. Nurhaida

The objective of this research is to evaluate the effect of the number of composite layers on the quality of the composite board from sago bark waste and plastic waste, and the number of composite layers that produce the best quality on composite board. The composite board is made with size 30 cm x 30 cm x 1 cm. The composition and division of the material was carried out manually with the polypropylene distribution divided into three parts: the front and rear respectively of 15%, and the center 70% of the plastic weight. Target density of composite boards was 0.7 g / cm3. The treatment used is based on the number of layers composing, which is 5 layers, 7 layers, 9 layers, 11 layers and 13 layers. After mixed the sago bark particle and waste of polypropylene, the materials then compressed with hot press at 180oC with pressure about ± 25 kg / cm2 for 10 minutes. The composite boards then tested the quality included physical and mechanical properties. Testing of physical and mechanical properties refers to JIS A 5908-2003 standard. Physical properties consist of density, moisture content, thickness swelling, and water absorption. Mechanical properties consist of modulus of rupture, modulus of elasticity, internal bonding, and modulus of screw holding strength. The study used a completely randomized design experiment consisting of 5 treatments and 3 replications. The results showed the average value of composite density was range between 0.6962 – 0.7896 g/cm3, the moisture content was range between 4.3388 % - 6.8066%, the thickness swelling was range between 8.2605% - 11.9615%, and water absorption was range between 17.2380% - 22.3867%. The average value of modulus of rupture was range between 60,0632 kg/cm2 – 64,4068 kg/cm2, the modulus of elasticity was range between 17935,1813g/cm2 – 32841,8278 kg/cm2, the internal bonding was range between 1,9268 kg/cm2  - 5,4119 kg/cm2, and the modulus of screw holding strength was range between 78,2530 kg/cm2 – 92,9677 kg/cm2. The composite board made from sago stem bark waste and polypropylene waste plastic with 13 layers treatment is the best composite board and fulfilled the JIS A 5908-2003 standard. Keywords: bark of sago, composite boards, layer of composite, polypropylenes plastic, waste


2009 ◽  
Vol 79-82 ◽  
pp. 1395-1398 ◽  
Author(s):  
L. Qin ◽  
W.J. Yu

Reconstituted bamboo Lumber suffers surface and mechanical properties degradation after exposure to outdoor environment. In this paper, Neosinocalamus affinis bamboo bundles was selected to thermo-treated at three temperature levels (160,180 and 200°C) for 2 hours and investigated the effect of xenon-arc light irradiation with water spray on the changes in color, thickness and mechanical properties of reconstituted bamboo lumber. The results indicated that the surface color of the samples changed rapidly during the irradiation process and the change rate decreased as the increasing of thermo-treated temperature. The mechanical properties analysis indicated that MOE wasn’t much affected by the thermo-treated and artificial weathering test, whereas MOR and shear strength decrease after exposure. The thickness swelling after exposure was improved by the thermo-treatment and decreased as the treated temperature increased.


2011 ◽  
Vol 239-242 ◽  
pp. 2411-2414
Author(s):  
Xing Zhen ◽  
Jiu Yin Pang ◽  
Shi Cheng Zhang ◽  
Ya Zhe Jiang

This study focuses on the effect of impregnation process on the main mechanical properties in the production of veneer composite plank. The results showed that:①Under the normal pressure and temperature the drug absorption of impregnated veneer shall extend the volume with the growth in impregnation time, but growing faster early, the later change slowly. In the impregnation process under pressure, its absorption rate and speed are greatly increased. ②The Modulus of rupture (MOR) and modulus of elasticity (MOE) of veneer composite plank are gradually increased with the drug absorption increased, but after reached a certain peak value they gradually decrease, and the variation of MOE is smaller than MOR.


2012 ◽  
Vol 6 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Chuwang Su ◽  
Quanping Yuan ◽  
Weixing Gan ◽  
Dawang Dai ◽  
Jingda Huang ◽  
...  

Based on the reflection, absorption and multiple reflection attenuation principle of composite shielding, composite fiberboard with multiple electromagnetic shielding functions was developed according to the structure design, which was made by filling with mineral powder and stainless steel nets, and then sprayed single face with conductive paint. The results show that: electromagnetic shielding effectiveness of the product is above 60dB and reaches the better grade in 18.85MHz-1.46GHz; the product filled with magnetite powder has better comprehensive mechanical properties than the product filled with barite powder, and its modulus of rupture, modulus of elasticity, internal bonding strength and thickness swelling rate of water absorption all reach the Chinese national standards.


FLORESTA ◽  
2021 ◽  
Vol 51 (2) ◽  
pp. 419
Author(s):  
Giuliano Ferreira Pereira ◽  
Setsuo Iwakiri ◽  
Rosilani Trianoski ◽  
Polliana D'angelo Rios ◽  
Renan Zunta Raia

The objective of this research was to evaluate the effects of thermal modifications, at different temperatures and exposure times, on the technological properties of mixed particleboard / OSB panels made out of Eucalyptus badjensis. Using the wood of Eucalyptus badjensis, Particleboard, OSB and mixed Particleboard/OSB panels (control and thermally modified) were manufactured. The mixed panels’ thermal modification was carried out under three temperatures (180ºC, 200ºC and 220ºC) and two exposure times (10 minutes and 12 minutes). For the panels’ manufacturing, 6% of phenol-formaldehyde adhesive and 1% of paraffin were employed, which was calculated based on the particles’ dry mass. The water absorption and thickness swelling properties were evaluated after 2 and 24 hours of immersion, in addition to the panels’ modulus of elasticity, modulus of rupture and internal bond. Based on the results, we were able to conclude that the thermal modification affected most of the physical properties positively. From the different exposure times studied, the most effective one was the period of 12 minutes, especially for water absorption after 2 hours, which caused a reduction of 11.27%. In turn, the most effective temperature was of 220ºC, highlighting the thickness swelling after 24 hours, which caused a swelling decrease of 23.76% in comparison with the control panels. Regarding the mechanical properties, the thermal modification, in terms of the studied exposure times and temperatures, did not affect the results of the mixed particleboard /OSB panels. 


2021 ◽  
Vol 891 (1) ◽  
pp. 012007
Author(s):  
Y S Hadi ◽  
E N Herliyana ◽  
I M Sulastiningsih ◽  
E Basri ◽  
R Pari ◽  
...  

Abstract Jabon (Anthocephalus cadamba) laminas were impregnated with polystyrene and reached 21.2% polymer loading. The laminas were manufactured for three-layer glued laminated timber (glulam) using isocyanate glue with glue spread 280 g/m2 and cold-press process. For comparison purposes, untreated glulam as control and also solid wood were prepared. The physical-mechanical properties were evaluated according to the Japanese Agricultural Standard (JAS) 234-2003. The results showed that the color of glulam was not different from polystyrene glulam. The density of polystyrene glulam was higher than untreated glulam and solid wood, but the moisture content was lower than the other. The product kinds of solid wood, untreated glulam, and polystyrene glulam did not affect shear strength and modulus of rupture (MOR), while the modulus of elasticity (MOE) of untreated glulam and hardness of polystyrene glulam were the highest values and the other products were not different one each other. Both kinds of glulam fulfilled the Japanese standard in terms of moisture content, MOR, and delamination in hot water, but MOE and shear strength did not. Regarding its advantages, polystyrene glulam could be further developed using a higher wood density.


Sign in / Sign up

Export Citation Format

Share Document