Pro-angiogenic effect of human kallikrein-related peptidase 12 (KLK12) in lung endothelial cells does not depend on kinin-mediated activation of B2 receptor

2013 ◽  
Vol 394 (3) ◽  
pp. 385-391 ◽  
Author(s):  
Thomas Kryza ◽  
Gilles Lalmanach ◽  
Marion Lavergne ◽  
Fabien Lecaille ◽  
Pascale Reverdiau ◽  
...  

Abstract Kallikrein-12 (KLK12) may play an important role in angiogenesis modulating proangiogenic factor bioavailability and activating the kinin receptor B2 pathway. We studied whether KLK12 had an impact on angiogenesis and the activation of kinin receptor B2 results from the KLK12-dependent generation of kinins. KLK12 efficiently hydrolyzed high molecular weight kininogen, liberating a fragment containing the carboxy-terminal end of kinins. The kininogenase activity of KLK12 was poor, however, due to the cleavage resistance of the N-terminal side of the kinin sequence. A very low amount of kinins was accordingly released after in vitro incubation of high molecular weight kininogen with KLK12 and thus the proangiogenic activity of KLK12 in lung endothelial cells was not related to a kinin release.

1987 ◽  
Author(s):  
Freek van Iwaarden ◽  
G Philip ◽  
de Groot ◽  
Bonno N Bouma

The presence of High Molecular Weight kininogen (HMWK) was demonstrated in cultured human endothelial cells (EC) by immunofluorescence techniques. Using an enzyme linked immunosorbent assay a concentration of 58 ng HMWK/10 cells was determined. Immunoprecipitation studies performed with lysed metabolically labelled endothelial cells and mono-specific antisera directed against HMWK suggested that HMWK is not synthesized by the endothelial cells. Endothelial cells cultured in the presence of HMWK-depleted serum did not contain HMWK. This, suggests that endothelial cells can internalize HMWK. Using 125I-HMWK it was demonstrated that cultured endothelial cells bind HMWK in a time-dependent, specific and saturable.way. The cells were found to internalize 125I-HMWK, since I-HMWK was detected in solubilized endothelial cells after the cell bound 125I-HMWK had been eluted with dextran sulphate.The binding of I-HMWK required the presence of zinc ions. Optimal binding of 125I-HMWK was observed at 50 μM Zn++ . Calcium ions inhibited the Zn++ dependent binding of 125I-HMWK |25EC. In the presence of 3 mM CaCl2 the total binding of 125I-HMWK was significantly decreased, and a .concentration of 200 μM Zn++ was Required for the binding of 125I-HMWK to thecells. Higher,. Ca concentrations did not further decrease the binding of 125I-HMWK. Analysis of tl^e binding data by the ligand computer program indicated 3.2 x 10 binding sites per cell for HMWK with a Kd of 35 nM at 50 μM ZnCl2 and 1 mM CaCl2. Specify binding of HMWK did also occur at physiological plasma Zn++ concentrations. Half maximal binding was observed at HMWK concentrations of ± 105 nM at 10 μM ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 10 molecules of HMWK bound per cell and at 80 nM with 2.8 x 10 molecules of HMWK bound per cell at 10 and 25 pM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway. M ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 10 molecules of HMWK bound per cell and at 80 nM with 2.8 x 10 molecules of HMWK bound per cell at 10 and 25 μM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway. M ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 10 molecules of HMWK bound per cell and at 80 nM with 2.8 x 10 molecules of HMWK bound per cell at 10 and 25 μM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway. M ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 10 molecules of HMWK bound per cell and at 80 nM with 2.8 x 10 molecules of HMWK bound per cell at 10 and 25 μM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway.M ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 16 molecules of HMWK bound per cell and at 80 nM with 2.8 x 106 molecules of HMWK bound per cell at 10 and 25 μM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway.


2000 ◽  
Vol 83 (05) ◽  
pp. 709-714 ◽  
Author(s):  
T. Mauron ◽  
B. Lämmle ◽  
W. A. Wuillemin

SummaryWe investigated the cleavage of high molecular weight kininogen (HK) by activated coagulation factor XI (FXIa) in vitro. Incubation of HK with FXIa resulted in the generation of cleavage products which were subjected to SDS-Page and analyzed by silverstaining, ligandblotting and immunoblotting, respectively. Upon incubation with FXIa, bands were generated at 111, 100, 88 kDa on nonreduced and at 76, 62 and 51 kDa on reduced gels. Amino acid sequence analysis of the reaction mixtures revealed three cleavage sites at Arg409-Arg410, at Lys502-Thr503 and at Lys325-Lys326. Analysis of HK-samples incubated with FXIa for 3 min, 10 min and 120 min indicated HK to be cleaved first at Arg409-Arg410, followed by cleavage at Lys502-Thr503 and then at Lys325-Lys326.In conclusion, HK is cleaved by FXIa at three sites. Cleavage of HK by FXIa results in the loss of the surface binding site of HK, which may constitute a mechanism of inactivation of HK and of control of contact system activation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5195-5195
Author(s):  
Venkaiah Betapudi ◽  
Keith R. McCrae

Abstract Abstract 5195 Background and objective: High molecular weight kininogen (HK) is an abundant plasma protein that functions as a critical cofactor in the kallikrein-kinin system. HK normally circulates in the single chain form, but is cleaved by plasma kallikrein to release the nonapeptide bradykinin and form cleaved high molecular weight kininogen (HKa) that consists of a heavy and light chain linked by a single disulfide bond. Conformational changes occurring in cleaved kininogen result in increased exposure of histidine and glycine-rich regions within kininogen domain 5 that impart HKa with unique properties, including the ability to inhibit angiogenesis by causing selective apoptosis of proliferating endothelial cells. However, neither the receptors that mediate the antiangiogenic activity of HKa nor the signaling pathways that lead to apoptosis have been rigorously defined. In this study we attempted to define specific signaling pathways activated following exposure of proliferating endothelial cells to HKa using a high-throughput, unbiased, microarray approach (Kinexus, Vancouver BC). Results: Endothelial cells were cultured at low density and stimulated to proliferate using 20 ng/ml bFGF in the absence or presence of HKa (15 nM). At various time points (20, 60 and 300 minutes) total cell extracts were prepared and analyzed using the Kinexus antibody microarray that includes 530 pan-specific and 270 phospho-site specific antibodies. In cells exposed to HKa, the analysis revealed increased expression of 109, 141 and 162 proteins, and decreased expression of 117, 68 and 59 proteins at the 20 min, 60 min, and 300 minute time points, respectively. In cells exposed to HKa, the number of newly-phosphorylated proteins increased from 30 at 20 minutes to 61 at 300 minutes after HKa treatment. Segregation of proteins whose expression level and/or phosphorylation state changed following exposure of cells to HKa into families demonstrated that HKa primarily targets protein kinases (61–70% of all proteins affected at the various time points), transcription factors (8–11%), and phosphatases (4–5%). Increased expression of several proteins involved in apoptosis, such as caspases 4, 6 and 7 and DNA fragmentation factors 35 and 45, and increased phosphorylation of stress regulated activating transcription factor 2 (ATF2) and apoptosis signal regulating protein kinase1 (ASK1) were evident within 20 minutes of exposure of cells to HKa. Metacore and Ingenuity pathway analysis of proteins that exhibited rapid changes in expression or phosphorylation revealed activation of several major signaling pathways including apoptosis, DNA damage response, angiogenesis, inflammation, and tissue remodeling and wound repair. Conclusion: Exposure of proliferating endothelial cells to HKa led to rapid changes in protein expression and phosphorylation. Most remarkable was the increased expression of several caspases within 20 minutes of addition of HKa to cells. Patterns of protein expression were consistent with activation of several pathways related to apoptosis, inflammation and tissue remodeling. These findings support suspected physiological functions of HK/HKa in vivo, and suggest specific proteins that may be targeted to further dissect effects of HKa on discrete cellular functions. Disclosures: No relevant conflicts of interest to declare.


1994 ◽  
Vol 72 (03) ◽  
pp. 397-402 ◽  
Author(s):  
Peter A Kr von dem Borne ◽  
Stefan J Koppelman ◽  
Bonno N Bouma ◽  
Joost C M Meijers

SummaryA deficiency of one of the proteins of the contact system of blood coagulation does not result in a bleeding disorder. For this reason activation of blood coagulation via this system is believed to be an in vitro artefact. However, patients deficient in factor XI do suffer from variable bleeding abnormalities. Recently, an alternative pathway for factor XI activation has been described. Factor XI was found to be activated by thrombin in the presence of dextran sulfate as a surface. However, high molecular weight kininogen (HK), to which factor XI is bound in plasma, and fibrinogen were shown to block this activation suggesting it to be an in vitro phenomenon. We investigated the thrombin-mediated factor XI activation using an amplified detection system consisting of factors IX, VIII and X, which was shown to be very sensitive for factor XIa activity. This assay is approximately 4 to 5 orders of magnitude more sensitive than the normal factor XIa activity assay using a chromogenic substrate. With this assay we found that factor XI activation by thrombin could take place in the absence of dextran sulfate. The initial activation rate was approximately 0.3 pM/min (using 25 nM factor XI and 10 nM thrombin). The presence of dextran sulfate enhanced this rate about 8500-fold. A very rapid and complete factor X activation was observed in the presence of dextran sulfate. Although only minute amounts of factor XIa were formed in the absence of dextran sulfate, significant activation of factor X was detected in the amplification assay within a few minutes. HK inhibited the activation of factor XI by thrombin strongly in the presence, yet only slightly in the absence of dextran sulfate (26 and 1.2 times, respectively). Despite the strong inhibition of HK on the activation of factor XI by thrombin in the presence of dextran sulfate, HK had only a minor effect on the factor Xa generation.We conclude that activation of factor XI by thrombin can take place regardless of the presence of a surface or HK. This activation might therefore be physiologically relevant. The inhibitory effect of HK on the thrombin-mediated factor XI activation is largely dextran sulfate dependent. Due to the amplification in the intrinsic system, trace amounts of factor XIa might generate physiological sufficient amounts of factor Xa for an adequate haemostatic response.


2015 ◽  
Vol 114 (09) ◽  
pp. 603-613 ◽  
Author(s):  
Jan-Marcus Daniel ◽  
Fabian Reich ◽  
Jochen Dutzmann ◽  
Simona Weisheit ◽  
Rebecca Teske ◽  
...  

SummaryCleaved high-molecular-weight kininogen (HKa) or its peptide domain 5 (D5) alone exert anti-adhesive properties in vitro related to impeding integrin-mediated cellular interactions. However, the anti-adhesive effects of HKa in vivo remain elusive. In this study, we investigated the effects of HKa on leukocyte recruitment and neointima formation following wire-induced injury of the femoral artery in C57BL/6 mice. Local application of HKa significantly reduced the accumulation of monocytes and also reduced neointimal lesion size 14 days after injury. Moreover, C57BL/6 mice transplanted with bone marrow from transgenic mice expressing enhanced green fluorescence protein (eGFP) showed a significantly reduced accumulation of eGFP+-cells at the arterial injury site and decreased neointimal lesion size after local application of HKa or the polypeptide D5 alone. A differentiation of accumulating eGFP+-cells into highly specific smooth muscle cells (SMC) was not detected in any group. In contrast, application of HKa significantly reduced the proliferation of locally derived neointimal cells. In vitro, HKa and D5 potently inhibited the adhesion of SMC to vitronectin, thus impairing their proliferation, migration, and survival rates. In conclusion, application of HKa or D5 decreases the inflammatory response to vascular injury and exerts direct effects on SMC by impeding the binding of integrins to extracellular matrix components. Therefore, HKa and D5 may hold promise as novel therapeutic substances to prevent neointima formation.


Sign in / Sign up

Export Citation Format

Share Document