scholarly journals Study of the influence of temperature and water level of the reservoir about the displacement of a concrete dam

2016 ◽  
Vol 21 (1) ◽  
pp. 107-120 ◽  
Author(s):  
S.R. Oro ◽  
T.R. Mafioleti ◽  
A. Chaves Neto ◽  
S.R.P. Garcia ◽  
C. Neumann Júnior

Abstract Multivariate techniques are used in this study to analyze the monitoring data displacements of a concrete dam, measured by means of pendulums, extensometer bases and multiple rod extensometers, taking into account the action of environmental conditions, bounded by the surface temperature of the concrete at ambient temperature and the tank water level. The canonical correlation analysis is used to evaluate the influence of environmental variables in the displacement of structures and dam foundations. The factor analysis is used to identify data sources of variability and order the sensors according to the action of factors. The dates of the measurements are grouped according to similarities in the present observations, by applying the cluster analysis. Then the discriminant analysis is used to assess the groups as to their homogeneity. The results demonstrate that the techniques used for distinguishing the dam responses and identify the effects of changes in environmental conditions on the displacements of the structures and dam foundations.

Genetics ◽  
1974 ◽  
Vol 77 (1) ◽  
pp. 163-168
Author(s):  
Henry E Schaffer ◽  
F M Johnson

ABSTRACT Significant correlations between allelic frequencies and environmental variables in a number of insect species have been demonstrated by multivariate techniques. Since many environmental variables show a strong relationship to geographic location and since gene flow between populations can also produce patterns of gene frequencies which are related to the geographic location, both selection and gene-flow hypotheses are consistent with the observed correlations. The genetic variables can be corrected for geographic location and so for linear gene-flow patterns. If, after correction, the genetic variables still show significant correlations with similarly corrected environmental variables, then these correlations are consistent with hypotheses of selection but not of gene flow. The data of JOHNSON and SCHAFFER (1973) have been reanalyzed using the method of canonical correlation after correction for geographical location by means of multiple regression. Five of the nine loci studied exhibit significant canonical correlations. These results, under the assumption of linear gene flow, support hypotheses of selective action of environmental variables in the genotype-environment relationships observed.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Natalie V. Klinard ◽  
Edmund A. Halfyard ◽  
Jordan K. Matley ◽  
Aaron T. Fisk ◽  
Timothy B. Johnson

Abstract Background Acoustic telemetry is an increasingly common method used to address ecological questions about the movement, behaviour, and survival of freshwater and marine organisms. The variable performance of acoustic telemetry equipment and ability of receivers to detect signals from transmitters have been well studied in marine and coral reef environments to inform study design and improve data interpretation. Despite the growing use of acoustic telemetry in large, deep, freshwater systems, detection efficiency and range, particularly in relation to environmental variation, are poorly understood. We used an array of 90 69-kHz acoustic receivers and 8 sentinel range transmitters of varying power output deployed at different depths and locations approximately 100–9500 m apart for 215 days to evaluate how the detection efficiency of acoustic receivers varied spatially and temporally in relation to environmental conditions. Results The maximum distance that tags were detected ranged from 5.9 to 9.3 km. Shallow tags consistently had lower detection efficiency than deep tags of the same power output and detection efficiency declined through the winter months (December–February) of the study. In addition to the distance between tag and receiver, thermocline strength, surface water velocity, ice thickness, water temperature, depth range between tag and receiver, and number of fish detections contributed to explaining variation in detection efficiency throughout the study period. Furthermore, the most significant models incorporated interactions between several environmental variables and tag–receiver distance, demonstrating the complex temporal and spatial relationships that exist in heterogeneous environments. Conclusions Relying on individual environmental variables in isolation to interpret receiver performance, and thus animal behaviour, may be erroneous when detection efficiency varies across distances, depths, or tag types. As acoustic telemetry becomes more widely used to study ecology and inform management, it is crucial to understand its limitations in heterogeneous environments, such as freshwater lakes, to improve the quality and interpretation of data. We recommend that in situ range testing and retrospective analysis of detection efficiency be incorporated into study design for telemetry projects. Furthermore, we caution against oversimplifying the dynamic relationship between detection efficiency and environmental conditions for the sake of producing a correction that can be applied directly to detection data of tagged animals when the intended correction may not be justified.


1975 ◽  
Vol 19 (3) ◽  
pp. 301-304
Author(s):  
Ann E. Martin

The present study was conducted to investigate the effects of environmental conditions on visual workload. The environmental variables used were temperature, studied at levels of 45°F., WBGT, and 95°F., WBGT; and noise, studied at 83 dBA intermittent noise and 93 dBA continuous noise. Workload was defined as the amount of attention demanded from an operator as measured by performance decrement on a secondary task while performing a primary and secondary task simultaneously. The secondary task was reading random numbers, and the primary task was reading word lists. Significant differences (p<.05) were found between the control condition and all experimental conditions. The low temperature and high temperature-continuous noise conditions were significantly different from the other conditions. Noise and temperature were found to significantly increase workload (p<05).


2019 ◽  
Vol 2 (4) ◽  
pp. 458
Author(s):  
Hanan Mohamed Omran ◽  
Ahmed Saad Ali ◽  
Abd El-Fatah Mohamed Hashem ◽  
Ali Abdalla Abdal-hay

The present research presents an intelligent fuzzy logic controller (FLC) system for control water level of nonlinear systems, whereas the cross-section area of the vertical water is not constant (conical tank). The mathematical model of the conical tank level system was derived and its simulation runs were carried out by considering the FLC. For comparative analysis, a similar test runs were also carried out by means of conventional ZN based PI-mode. Interestingly, the results illustrate that applying the FLC system in the control loop in the conical tank system could provide a good tracking performance than that of conventional PI model.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2685
Author(s):  
Xin Wang ◽  
Wenke Wang ◽  
Bing Yan

Tropical cyclone (TC) motion has an important impact on both human lives and infrastructure. Predicting TC intensity is crucial, especially within the 24 h warning time. TC intensity change prediction can be regarded as a problem of both regression and classification. Statistical forecasting methods based on empirical relationships and traditional numerical prediction methods based on dynamical equations still have difficulty in accurately predicting TC intensity. In this study, a prediction algorithm for TC intensity changes based on deep learning is proposed by exploring the joint spatial features of three-dimensional (3D) environmental conditions that contain the basic variables of the atmosphere and ocean. These features can also be interpreted as fused characteristics of the distributions and interactions of these 3D environmental variables. We adopt a 3D convolutional neural network (3D-CNN) for learning the implicit correlations between the spatial distribution features and TC intensity changes. Image processing technology is also used to enhance the data from a small number of TC samples to generate the training set. Considering the instantaneous 3D status of a TC, we extract deep hybrid features from TC image patterns to predict 24 h intensity changes. Compared to previous studies, the experimental results show that the mean absolute error (MAE) of TC intensity change predictions and the accuracy of the classification as either intensifying or weakening are both significantly improved. The results of combining features of high and low spatial layers confirm that considering the distributions and interactions of 3D environmental variables is conducive to predicting TC intensity changes, thus providing insight into the process of TC evolution.


1982 ◽  
Vol 39 (7) ◽  
pp. 937-942 ◽  
Author(s):  
Steven E. Campana ◽  
John D. Neilson

Tetracycline injected into juvenile starry flounders (Platichthys stellatus) was incorporated into the periphery of the sagittal otoliths within 24 h. The resulting band, visible under ultraviolet light, was used as a dated mark on the otolith growth increments. This technique was used to verify that increments were laid down on a daily basis, both in field and laboratory environments. Subdaily increments were visible in otoliths of fishes reared under most environmental conditions. The production of daily increments in juvenile starry flounders preconditioned to a natural environmental regime was unaffected by photoperiod or temperature fluctuation, suggesting the presence of an internal circadian rhythm.Key words: starry flounder, Platichthys stellatus; otoliths, daily rings, growth increments, circadian, tetracycline


2010 ◽  
Vol 58 (4) ◽  
pp. 299-314 ◽  
Author(s):  
Alicia Acuña Plavan ◽  
Cecilia Passadore ◽  
Luis Gimenez

The seasonal dynamics of the fish community in the Pando estuary on the Uruguayan coast were studied in relation to environmental sampled monthly between May 2002 and June 2003. Individuals collected were identified, and classified into stages (juveniles, adults) and functional groups. Relationships between community dynamics and environmental variables were evaluated using uni- and multivariate techniques. Twenty-one species, mostly freshwater stragglers, estuarine and marine migrants were collected. The most abundant species were Micropogonias furnieri, Mugil platanus, Paralichthys orbignyanus and Brevoortia aurea and were represented by juveniles. The community varied seasonally with rapid shifts in spring and autumn associated with changes in temperature and salinity. Significant correlations between abundance and temperature may be related to the timing of life cycle events. In this estuary, the salinity appears to play a key role in the functional structure and in the use of the habitat by juveniles. This is relevant for the definition of estuaries as nursery areas: this definition is context-dependent and is determined by the salinity conditions.


Sign in / Sign up

Export Citation Format

Share Document