Diversity of interaction phenomenon, cross-kink wave, and the bright-dark solitons for the (3 + 1)-dimensional Kadomtsev–Petviashvili–Boussinesq-like equation

Author(s):  
MeiYu Li ◽  
Sudao Bilige ◽  
Run-Fa Zhang ◽  
Lihui Han

Abstract The (3 + 1)-dimensional Kadomtsev–Petviashvili–Boussinesq-like equation has certain advantages in solving engineering problems. In this paper, based on the generalized bilinear form, we successfully derived the diversity of exact solutions under certain constraints by using the symbolic computation Maple. These solutions have interaction wave solitons, cross-kink wave solitons, and bright-dark solitons. To ensure the accuracy of these solutions, we made a special selection of the parameters involved and made a three-dimensional graph, density graph, and contour graph to illustrate the dynamics of the solutions. The resulting solutions can be used for the study of certain phenomena in physics.

2021 ◽  
Author(s):  
Long-Xing Li

Abstract In this paper, some novel lump solutions and interaction phenomenon between lump and kink M-soliton are investigated. Firstly, we study the evolution and degeneration behaviour of kink breather wave solution with difffferent forms for the (3+1)-dimensional Hirota-Satsuma-Ito-like equation by symbolic computation and Hirota bilinear form. In the process of degeneration of breather waves, some novel lump solutions are derived by the limit method. In addition, M-fifissionable soliton and the interaction phenomenon between lump solutions and kink M-solitons (lump-M-solitons) are investigated, the theorem and corollary about the conditions for the existence of the interaction phenomenon are given and proved further. The lump-M-solitons with difffferent types is studied to illustrate the correctness and availability of the given theorem and corollary, such as lump-cos type, lump-cosh-exponential type, lump cosh-cos-cosh type. Several three-dimensional fifigures are drawn to better depict the nonlinear dynamic behaviours including the oscillation of breather wave, the emergence of lump, the evolution behaviour of fission and fusion of lump-M-solitons and so on.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Christian Baals ◽  
Alexandre Gil Moreno ◽  
Jian Jiang ◽  
Jens Benary ◽  
Herwig Ott

2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Youlong Chen ◽  
Yong Zhu ◽  
Xi Chen ◽  
Yilun Liu

In this work, the compressive buckling of a nanowire partially bonded to an elastomeric substrate is studied via finite-element method (FEM) simulations and experiments. The buckling profile of the nanowire can be divided into three regimes, i.e., the in-plane buckling, the disordered buckling in the out-of-plane direction, and the helical buckling, depending on the constraint density between the nanowire and the substrate. The selection of the buckling mode depends on the ratio d/h, where d is the distance between adjacent constraint points and h is the helical buckling spacing of a perfectly bonded nanowire. For d/h > 0.5, buckling is in-plane with wavelength λ = 2d. For 0.27 < d/h < 0.5, buckling is disordered with irregular out-of-plane displacement. While, for d/h < 0.27, buckling is helical and the buckling spacing gradually approaches to the theoretical value of a perfectly bonded nanowire. Generally, the in-plane buckling induces smaller strain in the nanowire, but consumes the largest space. Whereas the helical mode induces moderate strain in the nanowire, but takes the smallest space. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and three-dimensional complex nanostructures.


Resources ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 65 ◽  
Author(s):  
Nicoletta Patrizi ◽  
Valentina Niccolucci ◽  
Riccardo Pulselli ◽  
Elena Neri ◽  
Simone Bastianoni

One of the main goals of any (sustainability) indicator should be the communication of a clear, unambiguous, and simplified message about the status of the analyzed system. The selected indicator is expected to declare explicitly how its numerical value depicts a situation, for example, positive or negative, sustainable or unsustainable, especially when a comparison among similar or competitive systems is performed. This aspect should be a primary and discriminating issue when the selection of a set of opportune indicators is operated. The Ecological Footprint (EF) has become one of the most popular and widely used sustainability indicators. It is a resource accounting method with an area based metric in which the units of measure are global hectares or hectares with world average bio-productivity. Its main goal is to underline the link between the (un)sustainability level of a product, a system, an activity or a population life style, with the land demand for providing goods, energy, and ecological services needed to sustain that product, system, activity, or population. Therefore, the traditional rationale behind the message of EF is: the larger EF value, the larger environmental impact in terms of resources use, the lower position in the sustainability rank. The aim of this paper was to investigate if this rationale is everywhere opportune and unambiguous, or if sometimes its use requires paying a special attention. Then, a three-dimensional modification of the classical EF framework for the sustainability evaluation of a product has been proposed following a previous work by Niccolucci and co-authors (2009). Finally, the potentialities of the model have been tested by using a case study from the agricultural context.


Author(s):  
Jianqing Lü ◽  
Sudao Bilige ◽  
Xiaoqing Gao

AbstractIn this paper, with the help of symbolic computation system Mathematica, six kinds of lump solutions and two classes of interaction solutions are discussed to the (3+1)-dimensional generalized Kadomtsev–Petviashvili equation via using generalized bilinear form with a dependent variable transformation. Particularly, one special case are plotted as illustrative examples, and some contour plots with different determinant values are presented. Simultaneously, we studied the trajectory of the interaction solution.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Richard G. Federley ◽  
Louis J. Romano

DNA replication is vital for an organism to proliferate and lying at the heart of this process is the enzyme DNA polymerase. Most DNA polymerases have a similar three dimensional fold, akin to a human right hand, despite differences in sequence homology. This structural homology would predict a relatively unvarying mechanism for DNA synthesis yet various polymerases exhibit markedly different properties on similar substrates, indicative of each type of polymerase being prescribed to a specific role in DNA replication. Several key conformational steps, discrete states, and structural moieties have been identified that contribute to the array of properties the polymerases exhibit. The ability of carcinogenic adducts to interfere with conformational processes by directly interacting with the protein explicates the mutagenic consequences these adducts impose. Recent studies have identified novel states that have been hypothesised to test the fit of the nascent base pair, and have also shown the enzyme to possess a lively quality by continually sampling various conformations. This review focuses on the homologous structural changes that take place in various DNA polymerases, both replicative and those involved in adduct bypass, the role these changes play in selection of a correct substrate, and how the presence of bulky carcinogenic adducts affects these changes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1524
Author(s):  
Sadikalmahdi Abdella ◽  
Souha H. Youssef ◽  
Franklin Afinjuomo ◽  
Yunmei Song ◽  
Paris Fouladian ◽  
...  

Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.


2019 ◽  
Vol 43 (4) ◽  
pp. 653-660 ◽  
Author(s):  
M.V. Gashnikov

Adaptive multidimensional signal interpolators are developed. These interpolators take into account the presence and direction of boundaries of flat signal regions in each local neighborhood based on the automatic selection of the interpolating function for each signal sample. The selection of the interpolating function is performed by a parameterized rule, which is optimized in a parametric lower dimensional space. The dimension reduction is performed using rank filtering of local differences in the neighborhood of each signal sample. The interpolating functions of adaptive interpolators are written for the multidimensional, three-dimensional and two-dimensional cases. The use of adaptive interpolators in the problem of compression of multidimensional signals is also considered. Results of an experimental study of adaptive interpolators for real multidimensional signals of various types are presented.


2017 ◽  
Vol 7 (2) ◽  
pp. 13
Author(s):  
Nurcahyani Dewi Retnowati

Three-dimensional applications has evolved penetrated in almost all areas of work, especially in the field of multimedia and other virtual media. Offeature films, television, print design to production games. LightWave 3D is a software that can model an object once animate. This research model a 3D object using LightWave Modeler then analyzed the results of modeling using graphic editors in LightWave Layout. To connect between LightWave Modeler and LightWave Layout used LightWave Hub. Analysis using the graphic editor can make a better model for the selection of each layer more detail.


2008 ◽  
Vol 392-394 ◽  
pp. 151-155
Author(s):  
Tong Wang ◽  
K. Jiang ◽  
Shu Qiang Xie ◽  
Shuang Shuang Hao

In this paper, the characteristics and general laws of cutting complex curved surface by wire electrical discharge machining (WEDM) system are studied. Based on analysis of motion parameters the universal mathematical model of polar coordinates is derived. Moreover, the simulation of WEDM system is introduced, which is carried out by using language Visual C++ and the three dimensional graph software OpenGL.This simulation method is helpful in improving machining quality and productivity of complex curved surfaces, and is fundation for establishing CAD/CAPP/CAM technology in WEDM.


Sign in / Sign up

Export Citation Format

Share Document