Numerical study of the energy efficiency of the building envelope containing multi-alveolar structures under Tunisian weather conditions
Abstract The study of the thermal inertia of buildings is a subject of major interest. The thermal insulation and the nature of the wall sensitively modify the inertia of the building and are the solutions to improve the energy efficiency of the envelope. The roof is well exposed to solar radiation in summer and contributes to significant losses in winter due to convective exchanges. To lead to a thermal comfort, a thermal insulation is necessary. In this context, we carry out a numerical study of the thermal behavior of a building with two zones in variable meteorological conditions for a Tunisian climate (region of Sousse) based on the thermoelectric analogy and using the nodal method as a numerical method. The object of this work is to study the effect of the thermal inertia of the roof equipped with a multi-alveolar structure on the thermal behavior of the air inside the room and on its energy consumption. Taking into account the energy input of occupant, a complete model was established to increase the accuracy of the calculations. The results show that the multi-alveolar structure placed on the outside of the roof reduces energy consumption during the winter period when the alveolar structure is placed in the conductive direction and during the summer period when the alveolar structure is placed in the insulate direction.