Convergence theorem for a finite family of asymptotically demicontractive multi-valued mappings in CAT(0) spaces

2020 ◽  
Vol 26 (1) ◽  
pp. 117-130
Author(s):  
Godwin C. Ugwunnadi ◽  
Oluwatosin T. Mewomo ◽  
Chinedu Izuchukwu

AbstractIn this paper, we introduce the class of asymptotically demicontractive multivalued mappings and establish a strong convergence theorem of the modified Mann iteration to a common fixed point of a finite family of asymptotically demicontractive multivalued mappings in a complete {\mathrm{CAT}(0)} space. We also give a numerical example of our iterative method to show its applicability.

Filomat ◽  
2014 ◽  
Vol 28 (7) ◽  
pp. 1525-1536 ◽  
Author(s):  
Habtu Zegeye

In this paper, we study a strong convergence theorem for a common fixed point of a finite family of Bregman strongly nonexpansive mappings in the framework of reflexive real Banach spaces. As a consequence, we prove convergence theorem for a common fixed point of a finite family of Bergman relatively nonexpansive mappings. Furthermore, we apply our method to prove strong convergence theorems of iterative algorithms for finding a common zero of a finite family of Bregman inverse strongly monotone mappings and a solution of a finite family of variational inequality problems.


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Kasamsuk Ungchittrakool

We prove a strong convergence theorem for a common fixed point of two sequences of strictly pseudocontractive mappings in Hilbert spaces. We also provide some applications of the main theorem to find a common element of the set of fixed points of a strict pseudocontraction and the set of solutions of an equilibrium problem in Hilbert spaces. The results extend and improve the recent ones announced by Marino and Xu (2007) and others.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Kasamsuk Ungchittrakool

We prove a strong convergence theorem by using a hybrid algorithm in order to find a common fixed point of Lipschitz pseudocontraction and κ-strict pseudocontraction in Hilbert spaces. Our results extend the recent ones announced by Yao et al. (2009) and many others.


2020 ◽  
Vol 53 (1) ◽  
pp. 152-166 ◽  
Author(s):  
Getahun B. Wega ◽  
Habtu Zegeye ◽  
Oganeditse A. Boikanyo

AbstractThe purpose of this article is to study the method of approximation for zeros of the sum of a finite family of maximally monotone mappings and prove strong convergence of the proposed approximation method under suitable conditions. The method of proof is of independent interest. In addition, we give some applications to the minimization problems and provide a numerical example which supports our main result. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear mappings.


Sign in / Sign up

Export Citation Format

Share Document