A New Recurrent Neural Network Learning Algorithm for Time Series Prediction

1997 ◽  
Vol 7 (1-2) ◽  
Author(s):  
P.G. Madhavan
2000 ◽  
Author(s):  
Magdy Mohamed Abdelhameed ◽  
Sabri Cetinkunt

Abstract Cerebellar model articulation controller (CMAC) is a useful neural network learning technique. It was developed two decades ago but yet lacks an adequate learning algorithm, especially when it is used in a hybrid- type controller. This work is intended to introduce a simulation study for examining the performance of a hybrid-type control system based on the conventional learning algorithm of CMAC neural network. This study showed that the control system is unstable. Then a new adaptive learning algorithm of a CMAC based hybrid- type controller is proposed. The main features of the proposed learning algorithm, as well as the effects of the newly introduced parameters of this algorithm have been studied extensively via simulation case studies. The simulation results showed that the proposed learning algorithm is a robust in stabilizing the control system. Also, this proposed learning algorithm preserved all the known advantages of the CMAC neural network. Part II of this work is dedicated to validate the effectiveness of the proposed CMAC learning algorithm experimentally.


Sign in / Sign up

Export Citation Format

Share Document