Design of 16 × 40 Gbps hybrid PDM-WDM FSO communication system and its performance comparison with the traditional model under diverse weather conditions of Bangladesh

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. K. M. Sharoar Jahan Choyon ◽  
Ruhin Chowdhury

Abstract A comprehensive design is proposed for free-space optical (FSO) communication system by hybridizing polarization division multiplexing (PDM) with wavelength division multiplexing (WDM) and its performance is investigated under diverse turbulent weather conditions of Bangladesh. Here we consider gamma–gamma (G–G) distribution for the turbulent FSO channel model. Moreover, a PDM-WDM technique not only maximizes the link capacity of FSO system but also enhances the spectral efficiency (SE) of the system. Besides, the performance of this hybrid PDM-WDM FSO system is compared with the traditional model and the proposed hybrid system exhibits excellent performance under diverse atmospheric conditions of Bangladesh. Performance analysis of the proposed model as well as the comparison with the traditional model is described in terms of optical power spectrum (OPS), optical signal to noise ratio (OSNR), bit error rate (BER), Q factor, constellation diagrams, and eye diagrams.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ruhin Chowdhury ◽  
A. K. M. Sharoar Jahan Choyon

Abstract A comprehensive design is proposed for alternate mark inversion (AMI)-encoded free-space optical (FSO) communication system by hybridizing polarization division multiplexing (PDM) with wavelength division multiplexing (WDM) and its performance is investigated under diverse weather conditions. The WDM transmitter comprises eight channels transmitting 320 Gbps data over the atmospheric turbulent channel considering gamma–gamma (G–G) distribution for the FSO channel model. A PDM-WDM technique not only maximizes the link capacity of the FSO system but also enhances the spectral efficiency (SE) of the system. Besides, the proposed hybrid AMI-PDM-WDM FSO system performance is compared with the traditional AMI-WDM-PDM and AMI-WDM models to demonstrate the advantages of our proposed model for the design of FSO link. It is observed that our proposed hybrid system exhibits excellent performance under diverse weather conditions over the traditional models in terms of Q factor, received optical power, bit error rate (BER), eye diagrams and optical signal-to-noise ratio (OSNR).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ruhin Chowdhury ◽  
A. K. M. Sharoar Jahan Choyon

Abstract A comprehensive design is proposed for the free-space optical (FSO) communication system by hybridizing circular polarization division multiplexing (CPDM) with coherent optical orthogonal frequency division multiplexing (CO-OFDM) and its performance is investigated realistically under diverse turbulent weather conditions of Bangladesh. Here, we consider Gamma–Gamma distribution for the turbulent FSO channel model. Moreover, the proposed scheme presents an excellent performance since the CPDM technique not only maximizes the link capacity of the FSO system but also enhances the spectral efficiency of the system. Besides, multipath fading, which is appeared during the FSO transmission, is significantly mitigated by OFDM modulation. The outcomes from the simulation confirm the advantages of the proposed hybrid scheme and also it can serve as a reference for the FSO application even in turbulent weather conditions. Performance analysis of the proposed model is described in terms of the optical power spectrum, optical signal-to-noise ratio, bit error rate, Q factor, constellation diagrams, and eye diagrams.


2017 ◽  
Vol 39 (1) ◽  
Author(s):  
Florence Rashidi ◽  
Jing He ◽  
Lin Chen

AbstractThe challenge in the free-space optical (FSO) communication is the propagation of optical signal through different atmospheric conditions such as rain, snow and fog. In this paper, an orthogonal frequency-division multiplexing technique (OFDM) is proposed in the FSO communication system. Meanwhile, considering the rain attenuation models based on Marshal & Palmer and Carbonneau models, the performance of FSO communication system based on the OFDM is evaluated under the heavy-rain condition in Changsha, China. The simulation results show that, under a heavy-rainfall condition of 106.18 mm/h, with an attenuation factor of 7 dB/km based on the Marshal & Palmer model, the bit rate of 2.5 and 4.0 Gbps data can be transmitted over the FSO channels of 1.6 and 1.3 km, respectively, and the bit error rate of less than 1E − 4 can be achieved. In addition, the effect on rain attenuation over the FSO communication system based on the Marshal & Palmer model is less than that of the Carbonneau model.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Rajneesh Kumar ◽  
Love Kumar

AbstractFree-space optical (FSO) communication is a wireless optical data transmission technology with a high data transmission rate. It has received much attention in recent years as it is cost-effective and has license free operation. It is line of sight free-space communication technique where optical signal severely degraded from atmospheric losses especially due to weather conditions; hence it restricts the link range and data carrying capacity. Therefore, a 16-channel ultra-dense wavelength division multiplexing–free space optics (UWDM–FSO) system each having each 10 Gb/s data rate is proposed to enhance the capacity and performance of FSO system. To authenticate the performance of the proposed system, investigation for different modulation formats such as nonreturn to zero (NRZ), return to zero (RZ), carrier suppressed return to zero (CSRZ) and duo binary (DB) are reported. Further, to reduce the atmospheric interference, multiple input multiple output (MIMO) technique is integrated into the proposed system. The outcomes of MIMO–UWDM–FSO link revealed a significant improvement in the bit error rate (BER), eye diagram and Q-factor, under different weather conditions. It is also observed that NRZ modulation formats perform better than RZ, CSRZ and DB formats.


Author(s):  
Muhammad Faisal Nadeem Khan ◽  
Haleema Khalil ◽  
Farhan Qamar ◽  
Mudassar Ali ◽  
Romana Shahzadi ◽  
...  

 Free-space optical (FSO) communication is one of the choice of researchers for most of the bandwidth hungry applications in evolving networks where the deployment of optical fiber is not directly possible as a transmission medium. In this research article, benefits, challenges, applications and role of FSO is discussed in detail for evolving networks. Further, performance of FSO communication system is tested using four channels of dense wavelength division multiplexing (DWDM). Various simulations are performed on FSO including different weather conditions, that directly affect the link performance. Many important parameters such as distance, data rate, bit error rate, amplifier gain, transmitter power, and attenuation under different weather conditions are tested in this research work. The operation of FSO communication system is carried out in the range 760-850 nm where equal channel spacing is considered for the working of DWDM communication system. Moreover, a fair comparison of proposed system is also presented for its operation in two more bands i.e. C and L-band, to show which one offers better performance. Simulation are performed in licensed version of Optisystem 14.0 and MATLAB. For the analysis of proposed system, results are presented in the form of BER and Q-factor plots.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bentahar Attaouia ◽  
Kandouci Malika ◽  
Ghouali Samir

AbstractThis work is focused to carry out the investigation of wavelength division multiplexing (WDM) approach on free space optical (FSO) transmission systems using Erbium Ytterbium Doped Waveguide Amplifier (EYDWA) integrated as post-or pre-amplifier for extending the reach to 30 Km for the cost-effective implementation of FSO system considering weather conditions. Furthermore, the performance of proposed FSO-wavelength division multiplexing (WDM) system is also evaluated on the effect of varying the FSO range and results are reported in terms of Q factor, BER, and eye diagrams. It has been found that, under clear rain the post-amplification was performed and was able to reach transmission distance over 27 Km, whereas, the FSO distance has been limited at 19.5 Km by using pre-amplification.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kavitha Thandapani ◽  
Maheswaran Gopalswamy ◽  
Sravani Jagarlamudi ◽  
Naveen Babu Sriram

Abstract Free Space Optical (FSO) communication has evolved as a feasible technique for wireless implementations which offers higher bandwidth capacities over various wavelengths and refers to the transmission of modulated visible beams through atmosphere in order to communicate. Wavelength Division Multiplexing (WDM) is a technology that multiplexes numerous carrier signals onto single fiber using nonidentical wavelengths and enables the efficiency of bandwidth and expanded data rate. Multiple Input Multiple Output (MIMO) is implemented to improve the quality and performance of free space optical communication in various atmospheric conditions. In this paper, a WDM-based FSO communication system is being implemented that benefits from MIMO which receives multiple copies of the signal at receiver that are independent and analyzed for various streams of data in MIMO i.e. 2 × 2, 4 × 4, 8 × 8. Various factors like BER, Quality Factor are analyzed for the WDM-based FSO communication with MIMO using the OptiSystem for various data streams of MIMO under different atmospheric conditions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bithi Mitra ◽  
Md. Jahedul Islam

AbstractIn this paper, the performance of two-dimensional (2-D) wavelength-hopping/time-spreading (WH/TS) optical code division multiple access (OCDMA) system over free space optical (FSO) channel is analyzed in the presence of pointing error and different weather conditions. Prime code scheme is employed for both wavelength-hopping and time-spreading to address user code-matrix. The operating central wavelength of 1550 nm is considered to demonstrate the bit error rate (BER) performance of the proposed system as a function of various system parameters. The required optical power of the proposed system is determined to maintain a BER value of 10−9. The numerical evaluation interprets that the BER performance is highly dependent on transmission length, transmitted power, pointing error angle as well as the number of simultaneous user. It is also observed that the 2-D OCDMA system over free space needs minimum required optical power in case of rainy atmospheric condition, but it is maximum for foggy atmospheric condition.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shabana Urooj ◽  
Norah Muhammad Alwadai ◽  
Vishal Sorathiya ◽  
Sunil Lavadiya ◽  
Juveriya Parmar ◽  
...  

Abstract This article has indicated optical coherent differential polarization (DP) 16 quadrature amplitude modulation (QAM) transceiver systems with free-space optical (FSO) channel in the presence of differential coding scheme. The optical coherent DP 16-QAM receiver executes the reverse process conversion of the optical signal into an electrical one that is detected to the users. The proposed optical coherent DP-16 QAM transceiver systems based FSO channel model with differential coding has been presented and compared with the previous model. However, the simulation results have confidence realization about the superiority of the proposed simulation model. Hence the proposed optical coherent DP-16 QAM transceiver systems simulation model with differential coding is verified and validated the enhancement performance based on simulation performance parameters.


2021 ◽  
Author(s):  
Sinan M. Abdulsatar ◽  
Mohammed A. Saleh ◽  
Abadulla Abass ◽  
M. H. Ali ◽  
Mohammed Ali Yaseen

Abstract The simulation and investigation of a 32×10 Gb/s WDM all–optical bidirectional hybrid communication system for outdoor applications is presented in this article via multidisciplinary softwares. In order to track the system condition, a strain sensor based on fiber Bragg grating (FBG) is integrated in–line with the fiber optic link (FO–link). Then, a free space optical link (FSO–link) with 4–channel is simulated to act backup or rescue to the FO–link in the event of disaster or bombing. The FO–link is working well until the strain reach to 180 µε, after that the FO–link has degraded. Therefore, an optical switch is incorporated in between these systems (FO–link & FSO–link) to turn–on the FSO–link which act as a backup system to FO–link and maintains the continuity of the data transmission. According to the hybrid link results, there is an efficient enhancement in the Q–factor as compared with the FO–link even when there is heavy rain.


Sign in / Sign up

Export Citation Format

Share Document