scholarly journals Behavioral states and state related heart rate and motor activity patterns in the newborn infant and the fetus ante partum. II. Computer analysis of state related heart rate baseline and macrofluctuation patterns

1979 ◽  
Vol 7 (3) ◽  
pp. 134-148 ◽  
Author(s):  
H. D. Junge
2021 ◽  
Vol 3 (3) ◽  
pp. 366-376
Author(s):  
Lorenzo Tonetti ◽  
Federico Camilli ◽  
Sara Giovagnoli ◽  
Vincenzo Natale ◽  
Alessandra Lugaresi

Early multiple sclerosis (MS) predictive markers of disease activity/prognosis have been proposed but are not universally accepted. Aim of this pilot prospective study is to verify whether a peculiar hyperactivity, observed at baseline (T0) in early relapsing-remitting (RR) MS patients, could represent a further prognostic marker. Here we report results collected at T0 and at a 24-month follow-up (T1). Eighteen RRMS patients (11 females, median Expanded Disability Status Scale-EDSS score 1.25, range EDSS score 0–2) were monitored at T0 (mean age 32.33 ± 7.51) and T1 (median EDSS score 1.5, range EDSS score 0–2.5). Patients were grouped into two groups: responders (R, 14 patients) and non-responders (NR, 4 patients) to treatment at T1. Each patient wore an actigraph for one week to record the 24-h motor activity pattern. At T0, NR presented significantly lower motor activity than R between around 9:00 and 13:00. At T1, NR were characterized by significantly lower motor activity than R between around 12:00 and 17:00. Overall, these data suggest that through the 24-h motor activity pattern, we can fairly segregate at T0 patients who will show a therapeutic failure, possibly related to a more active disease, at T1. These patients are characterized by a reduced morning level of motor activation. Further studies on larger populations are needed to confirm these preliminary findings.


1995 ◽  
Vol 12 (04) ◽  
pp. 259-261 ◽  
Author(s):  
Adam Hiett ◽  
Lawrence Devoe ◽  
Haywood Brown ◽  
Joy Watson

2011 ◽  
Vol 228 (2) ◽  
pp. 200-205 ◽  
Author(s):  
Naim Haddad ◽  
Rathinaswamy B. Govindan ◽  
Srinivasan Vairavan ◽  
Eric Siegel ◽  
Jessica Temple ◽  
...  

1990 ◽  
Vol 25 (4) ◽  
pp. 261-272 ◽  
Author(s):  
R. Mantel ◽  
H.P. van Geijn ◽  
F.J.M. Caron ◽  
J.M. Swartjes ◽  
E.E. van Woerden ◽  
...  

2009 ◽  
Vol 67 (3b) ◽  
pp. 789-791 ◽  
Author(s):  
Gisele R. de Oliveira ◽  
Francisco de A.A. Gondim ◽  
Edward R. Hogan ◽  
Francisco H. Rola

Heart rate changes are common in epileptic and non-epileptic seizures. Previous studies have not adequately assessed the contribution of motor activity on these changes nor have evaluated them during prolonged monitoring. We retrospectively evaluated 143 seizures and auras from 76 patients admitted for video EEG monitoring. The events were classified according to the degree of ictal motor activity (severe, moderate and mild/absent) in: severe epileptic (SE, N=17), severe non-epileptic (SNE, N=6), moderate epileptic (ME, N=28), moderate non-epileptic (MNE, N=11), mild epileptic (mE, N=35), mild non-epileptic (mNE, N=33) and mild aura (aura, N=13). Heart rate increased in the ictal period in severe epileptic, severe non-epileptic, moderate epileptic and mild epileptic events (p<0.05). Heart rate returned to baseline levels during the post ictal phase in severe non-epileptic seizures but not in severe epileptic patients. Aura events had a higher baseline heart rate. A cut-off of 20% heart rate increase may distinguish moderate epileptic and mild epileptic events lasting more than 30 seconds. In epileptic seizures with mild/absent motor activity, the magnitude of heart rate increase is proportional to the event duration. Heart rate analysis in seizures with different degrees of movement during the ictal phase can help to distinguish epileptic from non-epileptic events.


Sign in / Sign up

Export Citation Format

Share Document