Calculation studies of coated particles performance in sodium-cooled fast reactor

Kerntechnik ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. 45-49
Author(s):  
N. V. Maslov ◽  
E. I. Grishanin ◽  
P. N. Alekseev

Abstract This paper presents results of calculation studies of the viability of coated particles in the conditions of the reactor core on fast neutrons with sodium cooling, justifying the development of the concept of the reactor BN with microspherical fuel. Traditional rod fuel assemblies with pellet MOX fuel in the core of a fast sodium reactor are directly replaced by fuel assemblies with micro-spherical mixed (U,Pu)C-fuel. Due to the fact that the micro-spherical (U, Pu)C fuel has a developed heat removal surface and that the design solution for the fuel assembly with coated particles is horizontal cooling of the microspherical fuel, the core has additional possibilities of increasing inherent (passive) safety and improve the competitiveness of BN type of reactors. It is obvious from obtained results that the microspherical (U, Pu)C fuel is limited with the maximal burn-up depth of ∼11% of heavy atoms in conditions of the sodium-cooled fast reactor core at the conservative approach; it gives the possibility of reaching stated thermal-hydraulic and neutron-physical characteristics. Such a tolerant fuel makes it less likely that fission products will enter the primary circuit in case of accidents with loss of coolant and the introduction of positive reactivity, since the coating of microspherical fuel withstands higher temperatures than the steel shell of traditional rod-type fuel elements.

Author(s):  
Jing Chen ◽  
Dalin Zhang ◽  
Suizheng Qiu ◽  
Kui Zhang ◽  
Mingjun Wang ◽  
...  

As the first developmental step of the sodium-cooled fast reactor (SFR) in China, the pool-type China Experimental Fast Reactor (CEFR) is equipped with the openings and inter-wrapper space in the core, which act as an important part of the decay heat removal system. The accurate prediction of coolant flow in the reactor core calls for complete three-dimensional calculations. In the present study, an investigation of thermal-hydraulic behaviors in a 180° full core model similar to that of CEFR was carried out using commercial Computational Fluid Dynamics (CFD) software. The actual geometries of the peripheral core baffle, fluid channels and narrow inter-wrapper gap were built up, and numerous subassemblies (SAs) were modeled as the porous medium with appropriate resistance and radial power distribution. First, the three-dimensional flow and temperature distributions in the full core under normal operating condition are obtained and quantitatively analyzed. And then the effect of inter-wrapper flow (IWF) on heat transfer performance is evaluated. In addition, the detailed flow path and direction in local inter-wrapper space including the internal and outlet regions are captured. This work can provide some valuable understanding of the core thermal-hydraulic phenomena for the research and design of SFRs.


2014 ◽  
Vol 986-987 ◽  
pp. 231-234
Author(s):  
Jun Teng Liu ◽  
Qi Cai ◽  
Xia Xin Cao

This paper regarded CNP1000 power plant system as the research object, which is the second-generation half Nuclear Reactor System in our country, and tried to set Westinghouse AP1000 passive residual heat removal system to the primary circuit of CNP1000. Then set up a simulation model based on RELAP5/MOD3.2 program to calculate and analyze the response and operating characteristic of passive residual heat removal system on assumption that Station Blackout occurs. The calculation has the following conclusions: natural circulation was quickly established after accident, which removes core residual heat effectively and keep the core safe. The residual heat can be quickly removed, and during this process the actual temperature was lower than saturation temperature in reactor core.


2020 ◽  
Vol 225 ◽  
pp. 03007
Author(s):  
Tanja Goričanec ◽  
Domen Kotnik ◽  
Žiga Štancar ◽  
Luka Snoj ◽  
Marjan Kromar

An approach for calculating ex-core detector response using Monte Carlo code MCNP was developed. As a first step towards ex-core detector response prediction a detailed MCNP model of the reactor core was made. A script called McCord was developed as a link between deterministic program package CORD-2 and Monte Carlo code MCNP. It automatically generates an MCNP input from the CORD-2 data. A detailed MCNP core model was used to calculate 3D power distributions inside the core. Calculated power distributions were verified by comparison to the CORD-2 calculations, which is currently used for core design calculation verification of the Krško nuclea power plant. For the hot zero power configuration, the deviations are within 3 % for majority of fuel assemblies and slightly higher for fuel assemblies located at the core periphery. The computational model was further verified by comparing the calculated control rod worth to the CORD-2 results. The deviations were within 50 pcm and considered acceptable. The research will in future be supplemented with the in-core and ex-core detector signal calculations and neutron transport outside the reactor core.


1981 ◽  
Vol 103 (2) ◽  
pp. 289-294
Author(s):  
F. D. Ju ◽  
J. G. Bennett

In certain fast-reactor designs, the core is an assemblage of a large number of containers of long, hexagonal, hollow cylinders mounted vertically. These so-called “hex-cans” sit individually on coolant nozzles held down by their own weight, and are held as a group laterally at two levels by two constraint rings. At operating temperature, the rings bear on the hex-can assembly because of differences in thermal expansion. The compression of the rings on the hex-can assembly serves to prevent lifting of the can individually or in groups because of any accidental buildup of gas pressure. In the analysis, it is observed that the large number of hexcans and the distribution of the temperature field are such that the cross section of the reactor core can be treated as in a locally uniform dilatational field. An approximate equation was developed relating the plane deformation of a hollow hex cylinder to the global lateral pressure. The parameters are the material constitution and the thickness index (the ratio of the interior and the exterior cross-flat dimensions). The effective range of the equation covers the thickness ratio from zero to the stability limit when the wall becomes too thin resulting in buckling under the lateral pressure. The design equation is exact for zero thickness index. For hollow hex cylinders, numerical solutions were also obtained by the finite element method as a comparison. For a thickness index of 0.9 to 0.95, the difference is less than 0.1 percent. The cylinder constitutive equation is then used to determine an equivalent stiffness for a solid hex cylinder that is to have the same deformation as the given hex-can. The entire planar core region is then analyzed as a homogeneous medium of the equivalent stiffness. The method was applied to the core confinement design for a fast reactor. The thermoelastic solution was then applied to a relatively simpler configuration than the actual case to give a measure of the lateral pressure. The available friction forces for various lift configurations were then obtained. The gas pressure necessary to overcome the minimum friction force thus resulted. In addition, using the lateral pressure, the safety margin of the wall thickness of the hex-can for stability failures was determined.


Author(s):  
K. Mikityuk ◽  
A. Vasiliev ◽  
P. Fomichenko ◽  
T. Schepetina ◽  
S. Subbotin ◽  
...  

A concept of the RBEC lead-bismuth fast reactor is a synthesis, on one hand, experience in development and operation of fast sodium power reactors and reactors with Pb-Bi coolant, and, on the other hand, of large R&D activities on development of the core concept for modified fast sodium reactor. The paper presents improved project RBEC-M, characterized by a number of innovative decisions, which allow to improve safety and cost parameters compared to the basic RBEC project. These innovative decisions include application of nitride fuel based on 15N, two-circuit scheme without main reactor pumps, gas lift system in the primary circuit, passive reactor auxiliary cooling system, etc.


Author(s):  
Timothy M. Schriener ◽  
Mohamed S. El-Genk

This paper presents preliminary results of neutronics and thermal-hydraulics design analysis of a sodium cooled, small modular reactor (SMR). The reactor’s nominal thermal power is 150 MWth at sodium inlet and exit temperatures of 630 and 780 K. The reactor core is comprised of three rings of shrouded hexagonal assemblies of 19.8% enriched UN fuel pins and a hexagonal assembly of enriched B4C pins in the central cavity for a coarse reactivity control. The objectives are to provide enough excess reactivity for achieving a refueling cycle > 5 year, maintaining a more even coolant flow in the core assemblies and keeping the peak centerline temperature of UN fuel pins < 1300 K. Fuel assemblies with scalloped shroud walls, 4 rings and 1.942 cm diameter fuel pins with p/d = 1.098 are selected for the reference design of the present SMR. In this design, peak fuel centerline temperature is only 1240 K and the beginning-of-life, cold-clean excess reactivity is $26.67.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Toshio Wakabayashi ◽  
Makoto Takahashi ◽  
Naoyuki Takaki ◽  
Yoshiaki Tachi ◽  
Mari Yano

In a fast reactor, we evaluated a new core concept that prevents severe recriticality after whole-scale molten formation in a severe accident. A core concept in which Duplex pellets including neutron absorber are loaded in the outer core has been proposed. Analysis by the continuous energy model Monte Carlo code MVP using the JENDL-4.0 nuclear data library revealed that this fast reactor core has large negative reactivity due to fuel melting at the time of a severe accident, so that the core prevents recriticality. Regarding the core nuclear and thermal characteristics, the loading of Duplex pellets including neutron absorber in the outer core caused no significant differences from the normal core without Duplex pellets.


Author(s):  
Christian Poette ◽  
Vale´rie Brun-Magaud ◽  
Franck Morin ◽  
Jean-Franc¸ois Pignatel ◽  
Richard Stainsby ◽  
...  

In the Gas Fast Reactor development plan, ALLEGRO is the first necessary step towards the electricity generating prototype GFR. The ALLEGRO start of operation is planned by 2020. This needs to define all design options in 2010 and to start detailed design studies in 2013. ALLEGRO is a low power Gas Cooled Fast Reactor studied in the European framework. It is a loop type, non electricity generating reactor. Its power is about 80 MW. Several objectives are assigned to ALLEGRO. At first, it will demonstrate the viability of the GFR reactor system, no reactor of this type having been built in the past. Most of the GFR architecture, materials and components features are considered at reduced scale in ALLEGRO, excluding the energy conversion system. ALLEGRO will rely on the same safety options as the reactor system. In addition, the ALLEGRO core will allow the progressive qualification of the GFR ceramic fuel, with the possibility to load some ceramic carbide or nitride sub-assemblies in a first MOX core, with SiC/SiCf cladding and wrappers. When such unit test will be considered convincing enough, the diagrid and circuits are designed to accept full high temperature ceramic cores. The core neutrons can also be used to irradiate structural materials with fast neutron spectrum and in a large temperature range. The core can also include innovative irradiation fuel devices (samples or full bundles) for other reactor systems. Finally, branches on the main intermediate heat exchanger will allow the testing and validation of high temperature components and processes. The pre-conceptual design of ALLEGRO is shared between European partners through the GCFR 6th R&D Framework Program. After recalling the role of the European partners in the different design and safety tasks, the paper will give an overview of the current design with recent progresses in various areas like: • Core design and neutron performances, • The design of experimental advanced ceramic GFR fuel sub-assemblies included in several locations of the MOX core, • Fuel handling principles and solutions, • System design and global reactor architecture which is largely influenced by the Decay Heat Removal strategy (DHR) for depressurized accidents.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Jiarun Mao ◽  
Lei Song ◽  
Yuhao Liu ◽  
Jiming Lin ◽  
Shanfang Huang ◽  
...  

This paper presents capacity of the passive decay heat removal system (DHRS) operated under the natural circulation conditions to remove decay heat inside the main vessel of the Lead-bismuth eutectic cooled Fast Reactor (LFR). The motivation of this research is to improve the inherent safety of the LFR based on the China Accelerator Driven System (ADS) engineering project. Usually the plant is damaged due to the failure of the main pumps and the main heat exchangers under the Station Blackout (SBO). To prevent this accident, we proposed the DHRS based on the diathermic oil cooling for the LFR. The behavior of the DHRS and the plant was simulated using the CFD code STAR CCM+ using LFR with DHRS. The purpose of this analysis is to evaluate the heat exchange capacity of the DHRS and is to provide the reference for structural improvement and experimental design. The results show that the stable natural circulations are established in both the main vessel and the DHRS. During the decay process, the heat exchange power is above the core decay heat power. In addition, in-core decay heat and heat storage inside the main vessel are efficiently removed. All the thermal-hydraulics parameters are within a safe range. Moreover, the highest temperature occurs at the upper surface of the core. A swirl occurs at the corner of the lateral core surface and some improvements should be considered. And the natural circulation driving force can be further increased by reducing the loop resistance or increasing the natural circulation height based on the present design scenario to enhance the heat exchange effect.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Massimo Sarotto ◽  
Gabriele Firpo ◽  
Anatoly Kochetkov ◽  
Antonin Krása ◽  
Emil Fridman ◽  
...  

Abstract During the EURATOM FP7 project FREYA, a number of experiments were performed in a critical core assembled in the VENUS-F zero-power reactor able to reproduce the ALFRED lead-cooled fast reactor spectrum in a dedicated island. The experiments dealt with the measurements of integral and local neutronic parameters, such as the core criticality, the control rod and the lead void reactivity worth, the axial distributions of fission rates for the nuclides of major interest in a fast spectrum, the spectral indices of important actinides (238U, 239Pu, 237 Np) with respect to 235U. With the main aim to validate the neutronic codes adopted for the ALFRED core design, the VENUS-F core and its characterization measurements were simulated with both deterministic (ERANOS) and stochastic (MCNP, SERPENT) codes, by adopting different nuclear data libraries (JEFF, ENDF/B, JENDL, TENDL). This paper summarizes the main results obtained by highlighting a general agreement between measurements and simulations, with few discrepancies for some parameters that are discussed here. Additionally, a sensitivity and uncertainty analysis was performed with deterministic methods for the core reactivity: it clearly indicates that the small over-criticality estimated by the different codes/libraries resulted to be lower than the uncertainties due to nuclear data.


Sign in / Sign up

Export Citation Format

Share Document