Heat transfer characterization under radial jet and falling film induced rewetting

Kerntechnik ◽  
2021 ◽  
Vol 86 (5) ◽  
pp. 325-337
Author(s):  
M. Kumar ◽  
D. Mukhopadhyay

Abstract Empirical correlations are developed for rewetting velocity and maximum heat transfer coefficient during rewetting phase of single hot vertical Fuel Pin Simulator (FPS) by using radial jet impingement and falling film. Emergency Core Cooling System (ECCS) has been designed for Advance Heavy water Reactor (AHWR) to rewet the hot fuel pin under the loss of coolant accident. Coolant injection takes place from a water rod which is located at the center of the fuel bundle in form of jets to rewet hot surface of fuel pin under loss of coolant accident. This kind of design to reflood the fuel bundle is different than bottom and top spray reflooding practiced in PWR and BWR type of nuclear reactors. There are two different kinds of rewetting found during radial jet induced cooling. The first one is due to radial jet impingement and the second one is due to falling film which is below the jet impingement point. Rewetting velocity has been predicted along the length of fuel pin due to radial jet impingement cooling. Temperature of FPS has been varied from 400°C to 700°C with help of different powers supply, simulating decay heat of reactor. A variation of coolant radial jet mass flow rate is from 0.5 lpm to 1.8 lpm. It is considered during ECCS injection. It has been observed from the experiments that rewetting velocity decreases with increasing the clad surface temperature and increases with increasing the coolant mass flow rate. The rewetting velocity in falling film is found to be nearly 1.8 times higher than rewetting velocity predicted in circumferential direction. Further, it is found that maximum heat transfer coefficient increases with increasing the radial jet coolant mass flow rate. The maximum heat transfer coefficient in case of radial jet impingement is found to be nearly 1.5 times the falling film rewetting. Developed correlation predicts the maximum heat transfer coefficient with experimental data well within the error band of ±10%.

2019 ◽  
Vol 9 ◽  
pp. 184798041987646 ◽  
Author(s):  
XiaoRong Zhou ◽  
Yi Wang ◽  
Kai Zheng ◽  
Haozhong Huang

In this study, the cooling performance of nanofluids in car radiators was investigated. A car radiator, temperature measuring instrument, and other components were used to set up the experimental device, and the temperature of nanofluids passing through the radiator was measured by this device. Three kinds of nanoparticles, γ-Al2O3, α-Al2O3, and ZnO, were added to propylene glycol to prepared nanofluids, and the effects of nanoparticle size and type, volume concentration, initial temperature, and flow rate were tested. The results indicated that the heat transfer coefficients of all nanofluids first increased and then decreased with an increase in volume concentration. The ZnO-propylene glycol nanofluid reached a maximum heat transfer coefficient at 0.3 vol%, and the coefficient decreased by 25.6% with an increase in volume concentration from 0.3 vol% to 0.5 vol%. Smaller particles provided a better cooling performance, and the 0.1 vol% γ-Al2O3-propylene glycol nanofluid had a 19.9% increase in heat transfer coefficient compared with that of α-Al2O3-propylene glycol. An increase in flow rate resulted in a 10.5% increase in the heat transfer coefficient of the 0.5 vol% α-Al2O3-propylene glycol nanofluid. In addition, the experimental temperature range of 40–60°C improved the heat transfer coefficient of the 0.2 vol% ZnO-propylene glycol nanofluid by 46.4%.


2014 ◽  
Vol 660 ◽  
pp. 654-658
Author(s):  
Sarjito ◽  
Sartono Putro ◽  
Nurmuntaha Agung Nugraha

The aim of the research work describe in this paper is to investigate correlation of water, air massflow rate and calor fluks to heat transfer coefficient. The investigation was carried out toward a pipe section test developed from acrylic with diameter of 60 mm and 210 mm length, therefore, the buble can be easier to shoot. A concurrent water were flowed upward and air was injected from the bottom. The wall of the heater was heated using two thermocouple installed at the outer surfece of the heater. The fluid flow was measured using thermocouple installed along the annulus pipe. A heater with transparent tube diameter of 50 mm and 1800 mm length was also installed, and supplied with 1000 Watt electric power. Result of the experiment showed that heat transfer coefficient incresed along with the air massflow rate increased, and its decreased with the increasing of water mass flow rate. The maximum heat transfer coefficient of 4340,602 W/m2 °C at electric fluck calor of 29582,448 W/m2 was echieved on water volume flow rate of 3 lpm and 9 lpm of air volume rate.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
G. Nasif ◽  
R. M. Barron ◽  
R. Balachandar

Convective heat transfer of an impinging jet is numerically evaluated for piston cooling process. A circular jet of subcooled engine oil that impinges normally onto the inner surface of the piston for an engine operating at normal condition is considered in the study. The k−ω  shear stress transport (SST) based on transient three-dimensional governing Navier–Stokes (Reynolds-averaged Navier–Stokes (RANS)) equations are computationally solved using a finite-volume technique. The conjugate heat transfer method is used to obtain a coupled heat transfer solution between the solid and fluid regions, to predict the heat transfer coefficient at the piston walls and then the temperature distribution in the piston. It is shown that the cooling jet can significantly decrease the piston temperature. The location of the incidence of maximum heat transfer coefficient is moved away from the impingement point as the nozzle size increases.


2019 ◽  
Vol 16 (1) ◽  
pp. 33-44 ◽  
Author(s):  
M.K. Islam ◽  
Md. Hasanuzzaman ◽  
N.A. Rahim ◽  
A. Nahar

Sustainable power generation, energy security, and global warming are the big challenges to the world today. These issues may be addressed through the increased usage of renewable energy resources and concentrated solar energy can play a vital role in this regard. The performance of a parabolic-trough collector’s receiver is here investigated analytically and experimentally using water based and therminol-VP1based CuO, ZnO, Al2O3, TiO2, Cu, Al, and SiC nanofluids. The receiver size has been optimized by a simulation program written in MATLAB. Thus, numerical results have been validated by experimental outcomes under same conditions using the same nanofluids. Increased volumetric concentrations of nanoparticle is found to enhance heat transfer, with heat transfer coefficient the maximum in W-Cu and VP1-SiC, the minimum in W-TiO2 and VP1-ZnO at 0.8 kg/s flow rate. Changing the mass flow rate also affects heat transfer coefficient. It has been observed that heat transfer coefficient reaches its maximum of 23.30% with SiC-water and 23.51% with VP1-SiC when mass-flow rate is increased in laminar flow. Heat transfer enhancement drops during transitions of flow from laminar to turbulent. The maximum heat transfer enhancements of 9.49% and 10.14% were achieved with Cu-water and VP1-SiC nanofluids during turbulent flow. The heat transfer enhancements of nanofluids seem to remain constant when compared with base fluids during either laminar flow or turbulent flow.


2017 ◽  
Vol 29 (1) ◽  
pp. 44-48
Author(s):  
KM Tanvir Ahmmed ◽  
Sultana Razia Syeda

In this study saturated nucleate pool boiling of water with sodium oleate surfactant on a horizontal cylindrical heater surface has been investigated experimentally and compared with that of demineralized water. The concentration of sodium oleate in water was 100-300 ppm. The experimental results show that a small amount of surfactant enhances the heat transfer coefficient significantly. At low surfactant concentrations, heat transfer coefficient increases with increasing surfactant concentration in water. The maximum heat transfer enhancement is found to be at 250 ppm of sodium oleate solution. By adding more surfactant to water, heat transfer coefficient is found to be lowered. Surface tension of different concentration of sodium oleate solutions is measured. It is observed that the maximum heat transfer coefficient is obtained at a surfactant concentration that corresponds to the critical micelle concentration (cmc) of the sodium oleate solution.Journal of Chemical Engineering, Vol. 29, No. 1, 2017: 44-48


2015 ◽  
Vol 62 (4) ◽  
pp. 509-522 ◽  
Author(s):  
R. Dharmalingam ◽  
K.K. Sivagnanaprabhu ◽  
J. Yogaraja ◽  
S. Gunasekaran ◽  
R. Mohan

Abstract Cooling is indispensable for maintaining the desired performance and reliability over a very huge variety of products like electronic devices, computer, automobiles, high power laser system etc. Apart from the heat load amplification and heat fluxes caused by many industrial products, cooling is one of the major technical challenges encountered by the industries like manufacturing sectors, transportation, microelectronics, etc. Normally water, ethylene glycol and oil are being used as the fluid to carry away the heat in these devices. The development of nanofluid generally shows a better heat transfer characteristics than the water. This research work summarizes the experimental study of the forced convective heat transfer and flow characteristics of a nanofluid consisting of water and 1% Al2O3 (volume concentration) nanoparticle flowing in a parallel flow, counter flow and shell and tube heat exchanger under laminar flow conditions. The Al2O3 nanoparticles of about 50 nm diameter are used in this work. Three different mass flow rates have been selected and the experiments have been conducted and their results are reported. This result portrays that the overall heat transfer coefficient and dimensionless Nusselt number of nanofluid is slightly higher than that of the base liquid at same mass flow rate at same inlet temperature. From the experimental result it is clear that the overall heat transfer coefficient of the nanofluid increases with an increase in the mass flow rate. It shows that whenever mass flow rate increases, the overall heat transfer coefficient along with Nusselt number eventually increases irrespective of flow direction. It was also found that during the increase in mass flow rate LMTD value ultimately decreases irrespective of flow direction. However, shell and tube heat exchanger provides better heat transfer characteristics than parallel and counter flow heat exchanger due to multi pass flow of nanofluid. The overall heat transfer coefficient, Nusselt number and logarithmic mean temperature difference of the water and Al2O3 /water nanofluid are also studied and the results are plotted graphically.


2021 ◽  
pp. 199-199
Author(s):  
Lakshmi Reddy ◽  
Srinivasa Bayyapureddy Reddy ◽  
Kakumani Govindarajulu

Heat pipe is a two phase heat transfer device with high effective thermal conductivity and transfer huge amount of heat with minimum temperature gradient in between evaporator and condenser section. This paper objective is to predict the thermal performance in terms of thermal resistance (R) and heat transfer coefficient (h) of screen mesh wick heat pipe with DI water-TiO2 as working fluid. The input process parameters of heat pipe such as heat load (Q), tilt angle (?) and concentration of nanofluid (?) were modeled and optimized by utilizing Response Surface Methodology (RSM) with MiniTab-17 software to attain minimum thermal resistance and maximum heat transfer coefficient. The minimum thermal resistance of 0.1764 0C/W and maximum heat transfer coefficient of 1411.52 W/m2 0C was obtained under the optimized conditions of 200 W heat load, 57.20 tilt angle and 0.159 vol. % concentration of nano-fluid.


Sign in / Sign up

Export Citation Format

Share Document