scholarly journals Regularity “in Large” for the 3D Salmon’s Planetary Geostrophic Model of Ocean Dynamics

2020 ◽  
Vol 6 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Chongsheng Cao ◽  
Edriss S. Titi

AbstractIt is well known, by now, that the three-dimensional non-viscous planetary geostrophic model, with vertical hydrostatic balance and horizontal Rayleigh friction/damping, coupled to the heat diffusion and transport, is mathematically ill-posed. This is because the no-normal flow physical boundary condition implicitly produces an additional boundary condition for the temperature at the lateral boundary. This additional boundary condition is different, because of the Coriolis forcing term, than the no-heat-flux physical boundary condition. Consequently, the second order parabolic heat equation is over-determined with two different boundary conditions. In a previous work we proposed one remedy to this problem by introducing a fourth-order artificial hyper-diffusion to the heat transport equation and proved global regularity for the proposed model. A shortcoming of this higher-oder diffusion is the loss of the maximum/minimum principle for the heat equation. Another remedy for this problem was suggested by R. Salmon by introducing an additional Rayleigh-like friction/damping term for the vertical component of the velocity in the hydrostatic balance equation. In this paper we prove the global, for all time and all initial data, well-posedness of strong solutions to the three-dimensional Salmon’s planetary geostrophic model of ocean dynamics. That is, we show global existence, uniqueness and continuous dependence of the strong solutions on initial data for this model. Unlike the 3D viscous PG model, we are still unable to show the uniqueness of the weak solution. Notably, we also demonstrate in what sense the additional damping term, suggested by Salmon, annihilate the ill-posedness in the original system; consequently, it can be viewed as “regularizing” term that can possibly be used to regularize other related systems.

2022 ◽  
Vol 275 (1349) ◽  
Author(s):  
Leonard Gross

The existence and uniqueness of solutions to the Yang-Mills heat equation is proven over R 3 \mathbb {R}^3 and over a bounded open convex set in R 3 \mathbb {R}^3 . The initial data is taken to lie in the Sobolev space of order one half, which is the critical Sobolev index for this equation over a three dimensional manifold. The existence is proven by solving first an augmented, strictly parabolic equation and then gauge transforming the solution to a solution of the Yang-Mills heat equation itself. The gauge functions needed to carry out this procedure lie in the critical gauge group of Sobolev regularity three halves, which is a complete topological group in a natural metric but is not a Hilbert Lie group. The nature of this group must be understood in order to carry out the reconstruction procedure. Solutions to the Yang-Mills heat equation are shown to be strong solutions modulo these gauge functions. Energy inequalities and Neumann domination inequalities are used to establish needed initial behavior properties of solutions to the augmented equation.


2018 ◽  
Vol 175 ◽  
pp. 11009 ◽  
Author(s):  
Hidenori Fukaya ◽  
Tetsuya Onogi ◽  
Satoshi Yamaguchi

Recently, the Atiyah-Patodi-Singer(APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. Although it is widely applied to physics, the mathematical set-up in the original APS index theorem is too abstract and general (allowing non-trivial metric and so on) and also the connection between the APS boundary condition and the physical boundary condition on the surface of topological material is unclear. For this reason, in contrast to the Atiyah-Singer index theorem, derivation of the APS index theorem in physics language is still missing. In this talk, we attempt to reformulate the APS index in a "physicist-friendly" way, similar to the Fujikawa method on closed manifolds, for our familiar domain-wall fermion Dirac operator in a flat Euclidean space. We find that the APS index is naturally embedded in the determinant of domain-wall fermions, representing the so-called anomaly descent equations.


2020 ◽  
Vol 22 (3) ◽  
Author(s):  
Xin Liu ◽  
Edriss S. Titi

Abstract We establish the local and global well-posedness of strong solutions to the two- and three-dimensional anelastic equations of stratified viscous flows. In this model, the interaction of the density profile with the velocity field is taken into account, and the density background profile is permitted to have physical vacuum singularity. The existing time of the solutions is infinite in two dimensions, with general initial data, and in three dimensions with small initial data.


2015 ◽  
Vol 17 (02) ◽  
pp. 1350042 ◽  
Author(s):  
Valeria Marino ◽  
Filomena Pacella ◽  
Berardino Sciunzi

Consider the nonlinear heat equation vt - Δv = |v|p-1v in a bounded smooth domain Ω ⊂ ℝn with n > 2 and Dirichlet boundary condition. Given up a sign-changing stationary classical solution fulfilling suitable assumptions, we prove that the solution with initial value ϑup blows up in finite time if |ϑ - 1| > 0 is sufficiently small and if p is sufficiently close to the critical exponent [Formula: see text]. Since for ϑ = 1 the solution is global, this shows that, in general, the set of the initial data for which the solution is global is not star-shaped with respect to the origin. This phenomenon had been previously observed in the case when the domain is a ball and the stationary solution is radially symmetric.


2020 ◽  
pp. 1-32
Author(s):  
Basma Jaffal-Mourtada

We consider the equations of a rotating incompressible non-Newtonian fluid flow of grade two in a three dimensional torus. We prove two different results of global existence of strong solutions. In the first case, we consider that the elasticity coefficient α is arbitrary and we suppose that the third components of the vertical average of the initial data and of the forcing term are small compared to the horizontal components. In the second case, we consider a forcing term and initial data of arbitrary size but we restrict the size of α. In both cases, we show that the limit system is composed of a linear system and a second grade fluid system with two variables and three components.


Author(s):  
Xin Liu ◽  
Edriss S. Titi

AbstractThis work is devoted to establishing the local-in-time well-posedness of strong solutions to the three-dimensional compressible primitive equations of atmospheric dynamics. It is shown that strong solutions exist, are unique, and depend continuously on the initial data, for a short time in two cases: with gravity but without vacuum, and with vacuum but without gravity.


Sign in / Sign up

Export Citation Format

Share Document