scholarly journals An Algebraic Approach to Unital Quantities and their Measurement

2016 ◽  
Vol 16 (3) ◽  
pp. 103-126 ◽  
Author(s):  
Zoltan Domotor ◽  
Vadim Batitsky

Abstract The goals of this paper fall into two closely related areas. First, we develop a formal framework for deterministic unital quantities in which measurement unitization is understood to be a built-in feature of quantities rather than a mere annotation of their numerical values with convenient units. We introduce this idea within the setting of certain ordered semigroups of physical-geometric states of classical physical systems. States are assumed to serve as truth makers of metrological statements about quantity values. A unital quantity is presented as an isomorphism from the target system’s ordered semigroup of states to that of positive reals. This framework allows us to include various derived and variable quantities, encountered in engineering and the natural sciences. For illustration and ease of presentation, we use the classical notions of length, time, electric current and mean velocity as primordial examples. The most important application of the resulting unital quantity calculus is in dimensional analysis. Second, in evaluating measurement uncertainty due to the analog-to-digital conversion of the measured quantity’s value into its measuring instrument’s pointer quantity value, we employ an ordered semigroup framework of pointer states. Pointer states encode the measuring instrument’s indiscernibility relation, manifested by not being able to distinguish the measured system’s topologically proximal states. Once again, we focus mainly on the measurement of length and electric current quantities as our motivating examples. Our approach to quantities and their measurement is strictly state-based and algebraic in flavor, rather than that of a representationalist-style structure-preserving numerical assignment.

Author(s):  
Neha Jain ◽  
Nir Shlezinger ◽  
Yonina C. Eldar ◽  
Anubha Gupta ◽  
Vivek Ashok Bohara

2021 ◽  
Vol 32 (3) ◽  
Author(s):  
Ruo-Shi Dong ◽  
Lei Zhao ◽  
Jia-Jun Qin ◽  
Wen-Tao Zhong ◽  
Yi-Chun Fan ◽  
...  

1993 ◽  
Vol 7 (4) ◽  
pp. 408 ◽  
Author(s):  
James R. Matey ◽  
M.J. Lauterbach

2017 ◽  
Author(s):  
Evgenii S. Kolodeznyi ◽  
Innokenty I. Novikov ◽  
Andrey V. Babichev ◽  
Alexander S. Kurochkin ◽  
Andrey G. Gladyshev ◽  
...  

2021 ◽  
pp. 127440
Author(s):  
Hao Chi ◽  
Qiulin Zhang ◽  
Shuna Yang ◽  
Bo Yang ◽  
Yanrong Zhai ◽  
...  

2007 ◽  
Vol 16 (01) ◽  
pp. 1-14
Author(s):  
TASKIN KOCAK ◽  
GEORGE R. HARRIS ◽  
RONALD F. DEMARA

In this paper, a novel architecture for self-timed analog-to-digital conversion is presented and designed using the NULL Convention Logic (NCL) paradigm. This analog-to-digital converter (ADC) employs successive approximation and a one-hot encoded masking technique to digitize analog signals. The architecture scales readily to any given resolution by utilizing the one-hot encoded scheme to permit identical logical components for each bit of resolution. The four-bit configuration of the proposed design has been implemented and assessed via simulation in 0.18-μm CMOS technology. Furthermore, the ADC may be interfaced with either synchronous or four-phase asynchronous digital systems.


Sign in / Sign up

Export Citation Format

Share Document