scholarly journals Carbon nanomaterials enhanced cement-based composites: advances and challenges

2020 ◽  
Vol 9 (1) ◽  
pp. 115-135 ◽  
Author(s):  
Mingrui Du ◽  
Hongwen Jing ◽  
Yuan Gao ◽  
Haijian Su ◽  
Hongyuan Fang

AbstractCarbon nanomaterials, predominantly carbon nanofibers, carbon nanotubes, graphene, graphene nanoplates, graphene oxide and reduced graphene oxide, possess superior chemical, physical and mechanical properties. They have been successfully introduced into ordinary Portland cement to give enhancements in terms of mechanical properties, durability and electrical/thermal conductivity, and to modify the functional properties, converting conventional cement-based materials into stronger, smarter and more durable composites. This paper provides a comprehensive review of the properties of carbon nanomaterials, current developments and novel techniques in carbon nanomaterials enhanced cement-based composites (CN-CBCs). Further study of the applications of CN-CBCs at industrial scale is also discussed.

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 317 ◽  
Author(s):  
Guang-jie Yuan ◽  
Jie-Fei Xie ◽  
Hao-Hao Li ◽  
Bo Shan ◽  
Xiao-Xin Zhang ◽  
...  

Thermally reduced graphene oxide/carbon nanotube (rGO/CNT) composite films were successfully prepared by a high-temperature annealing process. Their microstructure, thermal conductivity and mechanical properties were systematically studied at different annealing temperatures. As the annealing temperature increased, more oxygen-containing functional groups were removed from the composite film, and the percentage of graphene continuously increased. When the annealing temperature increased from 1100 to 1400 °C, the thermal conductivity of the composite film also continuously increased from 673.9 to 1052.1 W m−1 K−1. Additionally, the Young’s modulus was reduced by 63.6%, and the tensile strength was increased by 81.7%. In addition, the introduction of carbon nanotubes provided through-plane thermal conduction pathways for the composite films, which was beneficial for the improvement of their through-plane thermal conductivity. Furthermore, CNTs apparently improved the mechanical properties of rGO/CNT composite films. Compared with the rGO film, 1 wt% CNTs reduced the Young’s modulus by 93.3% and increased the tensile strength of the rGO/CNT composite film by 60.3%, which could greatly improve its flexibility. Therefore, the rGO/CNT composite films show great potential for application as thermal interface materials (TIMs) due to their high in-plane thermal conductivity and good mechanical properties.


Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract BRUSH Alloy 3 offers the highest electrical and thermal conductivity of any beryllium-copper alloy. It possesses an excellent combination of moderate strength, good corrosion resistance and good resistance to moderately elevated temperatures. Because of its unique physical and mechanical properties, Brush Alloy 3 finds widespread use in welding applications (RWMA Class 3), current-carrying springs, switch and instrument parts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-454. Producer or source: Brush Wellman Inc..


2019 ◽  
Vol 163 ◽  
pp. 77-85 ◽  
Author(s):  
Faisal Nazeer ◽  
Zhuang Ma ◽  
Lihong Gao ◽  
Fuchi Wang ◽  
Muhammad Abubaker Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document