scholarly journals Spatial genetic structure in the very rare and species-rich Picea chihuahuana tree community (Mexico)

2014 ◽  
Vol 63 (1-6) ◽  
pp. 149-158 ◽  
Author(s):  
C. Z. Quiñones-Pérez ◽  
S. L. Simental-Rodríguez ◽  
C. Sáenz-Romero ◽  
J. P. Jaramillo-Correa ◽  
C. Wehenkel

Abstract In natural plant populations, the spatial genetic structure (SGS) is occasionally associated with evolutionary and ecological features such as the mating system, individual fitness, inbreeding depression and natural selection of the species of interest. The very rare Mexican P. chihuahuana tree community covers an area no more than 300 ha and has been the subject of several studies concerning its ecology and population genetics. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. However, analysis of the fine-scale SGS in this special forest tree community has not yet been conducted, which might help enrich the above mentioned conservation programs. In this study, we examined the SGS of this community, mostly formed by P. chihuahuana Martínez, Pinus strobiformis Ehrenberg ex Schlechtendah, Pseudotsuga menziesii (Mirb.) Franco, and Populus tremuloides Michx, in 14 localities at both the fine and large scales, with the aim of obtaining a better understanding of evolutionary processes. We observed a non-significant autocorrelation in fine-scale SGS, suggesting that the genetic variants of all four tree species are randomly distributed in space within each sampled plot of 50 x 50 m. At the larger scale, the autocorrelation was highly significant for P. chihuahuana and P. menziesii, probably as a result of insufficient gene flow due to the extreme population isolation and small sizes. For these two species our results provided strong support for the theory of isolation by distance.

Genetics ◽  
1998 ◽  
Vol 148 (2) ◽  
pp. 905-919
Author(s):  
Agnès Doligez ◽  
Claire Baril ◽  
Hélène I Joly

Abstract This paper presents the first theoretical study of spatial genetic structure within nonuniformly distributed continuous plant populations. A novel individual-based model of isolation by distance was constructed to simulate genetic evolution within such populations. We found larger values of spatial genetic autocorrelations in highly clumped populations than in uniformly distributed populations. Most of this difference was caused by differences in mean dispersal distances, but aggregation probably also produced a slight increase in spatial genetic structure. Using an appropriate level of approximation of the continuous distribution of individuals in space, we assessed the potential effects of density, seed and pollen dispersal, generation overlapping, and overdominance selection at an independent locus, on fine-scale genetic structure, by varying them separately in a few particular cases with extreme clumping. When selfing was allowed, all these input variables influenced both aggregation and spatial genetic structure. Most variations in spatial genetic structure were closely linked to variations in clumping and/or local density. When selfing was not allowed, spatial genetic structure was lower in most cases.


2018 ◽  
Vol 27 (3) ◽  
pp. 647-658 ◽  
Author(s):  
Elena Mosca ◽  
Erica A. Di Pierro ◽  
Katharina B. Budde ◽  
David B. Neale ◽  
Santiago C. González-Martínez

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Fábio de Almeida Vieira ◽  
Cristiane Gouvêa Fajardo ◽  
Anderson Marcos de Souza ◽  
Dulcinéia de Carvalho

Knowledge of genetic structure at different scales and correlation with the current landscape is fundamental for evaluating the importance of evolutionary processes and identifying conservation units. Here, we used allozyme loci to examine the spatial genetic structure (SGS) of 230 individuals ofProtium spruceanum, a native canopy-emergent in five fragments of Brazilian Atlantic forest (1 to 11.8 ha), and four ecological corridors (460 to 1 000 m length). Wright's statistic and Mantel tests revealed little evidence of significant genetic structure at the landscape-scale (; , ). At fine-scale SGS, low levels of relatedness within fragments and corridors (, ) were observed. Differences in the levels and distribution of the SGS at both spatial scales are discussed in relation to biological and conservation strategies of corridors and forest fragments.


2016 ◽  
Author(s):  
Stepfanie M. Aguillon ◽  
John W. Fitzpatrick ◽  
Reed Bowman ◽  
Stephan J. Schoech ◽  
Andrew G. Clark ◽  
...  

AbstractGeographically limited dispersal can shape genetic population structure and result in a correlation between genetic and geographic distance, commonly called isolation-bydistance. Despite the prevalence of isolation-by-distance in nature, to date few studies have empirically demonstrated the processes that generate this pattern, largely because few populations have direct measures of individual dispersal and pedigree information. Intensive, long-term demographic studies and exhaustive genomic surveys in the Florida Scrub-Jay (Aphelocoma coerulescens) provide an excellent opportunity to investigate the influence of dispersal on genetic structure. Here, we used a panel of genome-wide SNPs and extensive pedigree information to explore the role of limited dispersal in shaping patterns of isolation-by-distance in both sexes, and at an exceedingly fine spatial scale (within ~10 km). Isolation-by-distance patterns were stronger in male-male and male-female comparisons than in female-female comparisons, consistent with observed differences in dispersal propensity between the sexes. Using the pedigree, we demonstrated how various genealogical relationships contribute to fine-scale isolation-by-distance. Simulations using field-observed distributions of male and female natal dispersal distances showed good agreement with the distribution of geographic distances between breeding individuals of different pedigree relationship classes. Furthermore, we extended Malécot’s theory of isolation-by-distance by building coalescent simulations parameterized by the observed dispersal curve, population density, and immigration rate, and showed how incorporating these extensions allows us to accurately reconstruct observed sex-specific isolation-by-distance patterns in autosomal and Z-linked SNPs. Therefore, patterns of fine-scale isolation-by-distance in the Florida Scrub-Jay can be well understood as a result of limited dispersal over contemporary timescales.Author SummaryDispersal is a fundamental component of the life history of most organisms and therefore influences many biological processes. Dispersal is particularly important in creating genetic structure on the landscape. We often observe a pattern of decreased genetic relatedness between individuals as geographic distances increases, or isolation-by-distance. This pattern is particularly pronounced in organisms with extremely short dispersal distances. Despite the ubiquity of isolation-by-distance patterns in nature, there are few examples that explicitly demonstrate how limited dispersal influences spatial genetic structure. Here we investigate the processes that result in spatial genetic structure using the Florida Scrub-Jay, a bird with extremely limited dispersal behavior and extensive genome-wide data. We take advantage of the long-term monitoring of a contiguous population of Florida Scrub-Jays, which has resulted in a detailed pedigree and measurements of dispersal for hundreds of individuals. We show how limited dispersal results in close genealogical relatives living closer together geographically, which generates a strong pattern of isolation-by-distance at an extremely small spatial scale (<10 km) in just a few generations. Given the detailed dispersal, pedigree, and genomic data, we can achieve a fairly complete understanding of how dispersal shapes patterns of genetic diversity over short spatial scales.


2014 ◽  
Vol 300 (7) ◽  
pp. 1671-1681 ◽  
Author(s):  
Rosane Garcia Collevatti ◽  
Raquel Estolano ◽  
Marina Lopes Ribeiro ◽  
Suelen Gonçalves Rabelo ◽  
Elizangela J. Lima ◽  
...  

2011 ◽  
Vol 131 (3) ◽  
pp. 739-746 ◽  
Author(s):  
Madhav Pandey ◽  
Oliver Gailing ◽  
Hans H. Hattemer ◽  
Reiner Finkeldey

2012 ◽  
Vol 60 (1) ◽  
pp. 32 ◽  
Author(s):  
Laurence J. Clarke ◽  
Duncan I. Jardine ◽  
Margaret Byrne ◽  
Kelly Shepherd ◽  
Andrew J. Lowe

Atriplex sp. Yeelirrie Station (L. Trotter & A. Douglas LCH 25025) is a highly restricted, potentially new species of saltbush, known from only two sites ~30 km apart in central Western Australia. Knowledge of genetic structure within the species is required to inform conservation strategies as both populations occur within a palaeovalley that contains significant near-surface uranium mineralisation. We investigate the structure of genetic variation within populations and subpopulations of this taxon using nuclear microsatellites. Internal transcribed spacer sequence data places this new taxon within a clade of polyploid Atriplex species, and the maximum number of alleles per locus suggests it is hexaploid. The two populations possessed similar levels of genetic diversity, but exhibited a surprising level of genetic differentiation given their proximity. Significant isolation by distance over scales of less than 5 km suggests dispersal is highly restricted. In addition, the proportion of variation between the populations (12%) is similar to that among A. nummularia populations sampled at a continent-wide scale (several thousand kilometres), and only marginally less than that between distinct A. nummularia subspecies. Additional work is required to further clarify the exact taxonomic status of the two populations. We propose management recommendations for this potentially new species in light of its highly structured genetic variation.


2014 ◽  
Vol 11 (22) ◽  
pp. 6495-6507 ◽  
Author(s):  
S. H. Árnason ◽  
Ǽ. Th. Thórsson ◽  
B. Magnússon ◽  
M. Philipp ◽  
H. Adsersen ◽  
...  

Abstract. Sea sandwort (Honckenya peploides) was one of the first plants to successfully colonize and reproduce on the volcanic island Surtsey, formed in 1963 off the southern coast of Iceland. Using amplified fragment length polymorphic (AFLP) markers, we examined levels of genetic variation and differentiation among populations of H. peploides on Surtsey in relation to populations on the nearby island Heimaey and from the southern coast of Iceland. Selected populations from Denmark and Greenland were used for comparison. In addition, we tested whether the effects of isolation by distance could be seen in the Surtsey populations. Using two primer combinations, we obtained 173 AFLP markers from a total of 347 plant samples. The resulting binary matrix was then analysed statistically. The main results include the following: (i) Surtsey had the highest proportion of polymorphic markers as well as a comparatively high genetic diversity (55.5% proportion of polymorphic loci, PLP; 0.1974 HE) and Denmark the lowest (31.8% PLP; 0.132 HE), indicating rapid expansion during an early stage of population establishment on Surtsey and/or multiple origins of immigrants; (ii) the total genetic differentiation (FST) among Surtsey (0.0714) and Heimaey (0.055) populations was less than half of that found among the mainland populations in Iceland (0.1747), indicating substantial gene flow on the islands; (iii) most of the genetic variation (79%, p < 0.001) was found within localities, possibly due to the outcrossing and subdioecious nature of the species; (iv) a significant genetic distance was found within Surtsey, among sites, and this appeared to correlate with the age of plant colonization; and (v) the genetic structure analysis indicated multiple colonization episodes on Surtsey, whereby H. peploides most likely immigrated from the nearby island of Heimaey and directly from the southern coast of Iceland.


Sign in / Sign up

Export Citation Format

Share Document