scholarly journals Development of a trunk motor paradigm for use in neuroimaging

2020 ◽  
Vol 11 (1) ◽  
pp. 193-200
Author(s):  
Elizabeth Saunders ◽  
Brian C. Clark ◽  
Leatha A. Clark ◽  
Dustin R. Grooms

AbstractThe purpose of this study was to quantify head motion between isometric erector spinae (ES) contraction strategies, paradigms, and intensities in the development of a neuroimaging protocol for the study of neural activity associated with trunk motor control in individuals with low back pain. Ten healthy participants completed two contraction strategies; (1) a supine upper spine (US) press and (2) a supine lower extremity (LE) press. Each contraction strategy was performed at electromyographic (EMG) contraction intensities of 30, 40, 50, and 60% of an individually determined maximum voluntary contraction (MVC) (±10% range for each respective intensity) with real-time, EMG biofeedback. A cyclic contraction paradigm was performed at 30% of MVC with US and LE contraction strategies. Inertial measurement units (IMUs) quantified head motion to determine the viability of each paradigm for neuroimaging. US vs LE hold contractions induced no differences in head motion. Hold contractions elicited significantly less head motion relative to cyclic contractions. Contraction intensity increased head motion in a linear fashion with 30% MVC having the least head motion and 60% the highest. The LE hold contraction strategy, below 50% MVC, was found to be the most viable trunk motor control neuroimaging paradigm.

2009 ◽  
Vol 34 (6) ◽  
pp. 1008-1016 ◽  
Author(s):  
David G. Behm ◽  
Dario Cappa ◽  
Geoffrey A. Power

Time constraints are cited as a barrier to regular exercise. If particular exercises can achieve multiple training functions, the number of exercises and the time needed to achieve a training goal may be decreased. It was the objective of this study to compare the extent of trunk muscle electromyographic (EMG) activity during running and callisthenic activities. EMG activity of the external obliques, lower abdominals (LA), upper lumbar erector spinae (ULES), and lumbosacral erector spinae (LSES) was monitored while triathletes and active nonrunners ran on a treadmill for 30 min at 60% and 80% of their maximum heart rate (HR) reserve, as well as during 30 repetitions of a partial curl-up and 3 min of a modified Biering-Sørensen back extension exercise. The mean root mean square (RMS) amplitude of the EMG signal was monitored over 10-s periods with measures normalized to a maximum voluntary contraction rotating curl-up (external obliques), hollowing exercise (LA), or back extension (ULES and LSES). A main effect for group was that triathletes had greater overall activation of the external obliques (p < 0.05), LA (p = 0.01), and LSES (p < 0.05) than did nonrunners. Main effects for exercise type showed that the external obliques had less EMG activity during 60% and 80% runs, respectively, than with the curl-ups (p = 0.001). The back extension exercise provided less ULES (p = 0.009) and LSES (p = 0.0001) EMG activity than the 60% and 80% runs, respectively. In conclusion, triathletes had greater trunk activation than nonrunners did while running, which could have contributed to their better performance. Back-stabilizing muscles can be activated more effectively with running than with a prolonged back extension activity. Running can be considered as an efficient, multifunctional exercise combining cardiovascular and trunk endurance benefits.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247442
Author(s):  
Tamer M. Khalaf ◽  
Mohamed Z. Ramadan ◽  
Adham E. Ragab ◽  
Mohammed H. Alhaag ◽  
Khalil A. AlSharabi

Background The handling of unknown weights, which is common in daily routines either at work or during leisure time, is suspected to be highly associated with the incidence of low back pain (LBP). Objectives To investigate the effects of knowledge and magnitude of a load (to be lifted) on brain responses, autonomic nervous activity, and trapezius and erector spinae muscle activity. Methods A randomized, within-subjects experiment involving manual lifting was conducted, wherein 10 participants lifted three different weights (1.1, 5, and 15 kg) under two conditions: either having or not having prior knowledge of the weight to be lifted. Results The results revealed that the lifting of unknown weights caused increased average heart rate and percentage of maximum voluntary contraction (%MVC) but decreased average inter-beat interval, very-low-frequency power, low-frequency power, and low-frequency/high-frequency ratio. Regardless of the weight magnitude, lifting of unknown weights was associated with smaller theta activities in the power spectrum density (PSD) of the central region, smaller alpha activities in the PSD of the frontal region, and smaller beta activities in the PSDs of both the frontal and central regions. Moreover, smaller alpha and beta activities in the PSD of the parietal region were associated only with lifting of unknown lightweights. Conclusions Uncertainty regarding the weight to be lifted could be considered as a stress-adding variable that may increase the required physical demand to be sustained during manual lifting tasks. The findings of this study stress the importance of eliminating uncertainty associated with handling unknown weights, such as in the cases of handling patients and dispatching luggage. This can be achieved through preliminary self-sensing of the load to be lifted, or the cautious disclosure of the actual weight of manually lifted objects, for example, through clear labeling and/or a coding system.


2020 ◽  
Vol 36 (6) ◽  
pp. 436-443
Author(s):  
Jayshree Shah ◽  
Tarushi Tanwar ◽  
Iram Iram ◽  
Mosab Aldabbas ◽  
Zubia Veqar

The objective was to investigate the electromyographic activity of the lumbar multifidus (MF) muscle and longissimus thoracis muscle, along with their activity ratio (MF longissimus thoracis ratio), during quadruped stabilization exercise performed with neutral posture and with increased lumbar lordosis in patients with chronic low back pain (CLBP). A total of 23 patients with CLBP (12 females and 11 males) were recruited based on inclusion and exclusion criterion. Each patient performed 4 exercises in random order, with surface electromyography electrodes and an electrogoniometer attached. A cross-sectional study design was used to measure the amplitude of muscle activation (as a percentage of maximum voluntary contraction) in each patient across the 2 muscles (MF and longissimus thoracis) during quadruped stabilization exercise with neutral posture and with increased lumbar lordosis. A 2-way analysis of variance was conducted, which demonstrated a statistically significant increase in the recruitment of MF with increased lumbar lordosis in patients with CLBP during quadruped exercise. An increase of 9.7% and 16.9% maximum voluntary contraction in MF electromyographic activity was observed in lumbar lordosis posture during the quadruped leg raise and quadruped leg-arm raise exercise, respectively (P < .01), when compared to the neutral posture. The increased recruitment of MF with lumbar lordosis in the quadruped position has strong implications in the assessment and management of patients with CLBP.


Author(s):  
Calatayud ◽  
Escriche-Escuder ◽  
Cruz-Montecinos ◽  
Andersen ◽  
Pérez-Alenda ◽  
...  

Most of the studies evaluating core muscle activity during exercises have been conducted with healthy participants. The objective of this study was to compare core muscle activity and tolerability of a variety of dynamic and isometric exercises in patients with non-specific low back pain (NSLBP). 13 outpatients (average age 52 years; all with standing or walking work in their current or latest job) performed 3 consecutive repetitions at 15-repetition maximum during different exercises in random order. Surface electromyography was recorded for the rectus abdominis; external oblique and lumbar erector spinae. Patients rated tolerability of each exercise on a 5-point scale. The front plank with brace; front plank and modified curl-up can be considered the most effective exercises in activating the rectus abdominis; with a median normalized EMG (nEMG) value of 48% (34–61%), 46% (26–61%) and 50% (28–65%), respectively. The front plank with brace can be considered the most effective exercise in activating the external oblique; with a nEMG of 77% (60–97%). The squat and bird-dog exercises are especially effective in activing the lumbar erector spinae; with nEMG of 40% (24–87%) and 29% (27–46%), respectively. All the exercises were well tolerated; except for the lateral plank that was mostly non-tolerated. In conclusion; the present study provides a variety of dynamic and isometric exercises; where muscle activity values and tolerability can be used as guide to design evidence-based exercise programs for outpatients with NSCLBP.


Author(s):  
Christos Tsigkanos ◽  
Theano Demestiha ◽  
Chara Spiliopoulou ◽  
Georgios Tsigkanos

BACKGROUND: Kinematic analysis has been a dominant tool for addressing the neuromuscular and proprioceptive alterations that occur in Low Back Pain (LBP) patients. Movement variability is a crucial component of this analysis. During the past years a promising approach appears to be the application of non-linear indices. OBJECTIVE: The aim of the study was to compare movement variability, as expressed mainly by non-linear indices, at the pelvis and lumbar between LBP patients and healthy participants during gait. METHODS: Sixteen (16) LBP patients and thirteen (13) healthy control subjects (non-athletes) participated in the study. Participants walked on a treadmill at different walking conditions while recorded by a 6-infrared camera optoelectronic system. Kinematic variability of pelvic and lumbar movement was analyzed using linear (standard deviation) and non-linear indices (Maximal Lyapunov Exponent – LyE and Approximate Entropy – ApEn). RESULTS: Healthy subjects were found to have significantly greater mean values than LBP patients at seven pelvic and lumbar components in LyE, ApEn and SD. Specifically, the calculated LyE at the pelvis during normal gait was proven to have a sensitivity of 92.3% and a specificity of 90% in the discrimination of healthy subjects from LBP patients. Female subjects presented with higher variability in gait measures than males. CONCLUSION: Healthy participants presented with higher movement variability in their kinematic behavior in comparison to LBP patients. Lower variability values may be partly explained by the attempt of LBP patients to avoid painful end of range of motion positions. In this perspective non-linear indices seem to relate to qualitive characteristics of movement that need to be taken into consideration during rehabilitation.


2021 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Lucien Robinault ◽  
Aleš Holobar ◽  
Sylvain Crémoux ◽  
Usman Rashid ◽  
Imran Khan Niazi ◽  
...  

Over recent years, a growing body of research has highlighted the neural plastic effects of spinal manipulation on the central nervous system. Recently, it has been shown that spinal manipulation improved outcomes, such as maximum voluntary force and limb joint position sense, reflecting improved sensorimotor integration and processing. This study aimed to further evaluate how spinal manipulation can alter neuromuscular activity. High density electromyography (HD sEMG) signals from the tibialis anterior were recorded and decomposed in order to study motor unit changes in 14 subjects following spinal manipulation or a passive movement control session in a crossover study design. Participants were asked to produce ankle dorsiflexion at two force levels, 5% and 10% of maximum voluntary contraction (MVC), following two different patterns of force production (“ramp” and “ramp and maintain”). A significant decrease in the conduction velocity (p = 0.01) was observed during the “ramp and maintain” condition at 5% MVC after spinal manipulation. A decrease in conduction velocity suggests that spinal manipulation alters motor unit recruitment patterns with an increased recruitment of lower threshold, lower twitch torque motor units.


2019 ◽  
Vol 22 (11) ◽  
pp. 1206-1212 ◽  
Author(s):  
Eduardo Martinez-Valdes ◽  
Fiona Wilson ◽  
Neil Fleming ◽  
Sarah-Jane McDonnell ◽  
Alex Horgan ◽  
...  

Spine ◽  
2020 ◽  
Vol 45 (20) ◽  
pp. E1319-E1325
Author(s):  
Anke Hofste ◽  
Remko Soer ◽  
Etto Salomons ◽  
Jan Peuscher ◽  
André Wolff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document