Effect of shock waves on structural and dielectric properties of ammonium dihydrogen phosphate crystal

2019 ◽  
Vol 234 (9) ◽  
pp. 557-567 ◽  
Author(s):  
Sivakumar Aswathappa ◽  
Sahaya Jude Dhas Sathiyadhas ◽  
Balachandar Settu ◽  
Martin Britto Dhas Sathiyadhas Amalapushpam

Abstract In this research article, the authors pay attention to investigate the effect of structural and dielectric properties of ammonium dihydrogen phosphate (ADP) crystal under pre and post shock loaded conditions. A shock wave of Mach number 1.9 was utilized for the present investigation which was generated by a table-top pressure driven shock tube. The crystalline nature and grain size variations were estimated by powder X-ray diffraction technique. The grain size of post shock wave loaded ADP crystal is found to be larger than that of the pre shock wave loaded ADP crystal. The dielectric properties of the pre and post shock loaded crystals were analyzed by impedance analyzer as a function of frequency (1 kHz–1 MHz) at ambient temperature. The dielectric constant is observed to be varying from 346 to 362 at the frequency of 400 kHz for pre and post shock wave loaded ADP crystals, respectively. The obtained results suggest that shock waves can be an alternate tool to tailor the physical properties of materials without creating any change in the original crystal system and surface morphology.

Author(s):  
Sivakumar Aswathappa ◽  
Arumugam Saranraj ◽  
Sahaya Jude Dhas Sathiyadhas ◽  
Kondaviti Showrilu ◽  
Martin Britto Dhas Sathiyadhas Amalapushpa

AbstractImpact of shock waves on non-linear optical materials bring about a lot of unknown behaviors of materials and such kinds of shock wave recovery experiments are highly required for the better understanding of material-property relationship. In the present context, we have performed experiments on the impact of structural properties of ammonium dihydrogen phosphate (ADP) samples under shock wave loaded conditions and the results of the test samples have been evaluated by X-ray diffraction (XRD), Raman spectroscopy, diffused reflectance spectroscopy (DRS) and field emission scanning electron microscopic (FESEM) technique. Interestingly, prismatic face of ADP shows loss of degree of crystallinity whereas pyramidal face shows enhancement of crystalline nature with respect to number of shock pulses due to shock wave induced dynamic re-crystallization. Hence, the present problem is worthy enough to unearth and understand the anisotropic nature of the ADP crystal and their structural modifications at shock wave loaded conditions.


2016 ◽  
Vol 675-676 ◽  
pp. 573-576 ◽  
Author(s):  
Pratya Thongpanit ◽  
Weerapong Chewpraditkul ◽  
Nakarin Pattanaboonmee

Ammonium dihydrogen phosphate (ADP) crystals is very interesting due to its nonlinear optical property. This study investigated on improving of material for academic use by adding boric acid to modify ADP crystals. Slow evaporation method in aqueous solutions of pure ADP and ADP doped with three concentrations of H3BO3 as 0.1, 1.0, 5.0 %wt were studied. The grown crystals were confirmed tetragonal structure by powder X-ray diffraction studies. The FTIR spectrum analysis presented various functional groups of boron in three conditions of doped ADP. TGA study was comfirned the temperature stability at 220 °C for both pure and doped ADP crytals. The machanical stress was analyzed by Vicker’s hardness measurement. The results of this analysis showed boric acid doped 1.0 %wt had superior machanical stress from 10 to 75 grams. ADP doped with boric acid at 1.0 %wt was accepted in all test properties.


2013 ◽  
Vol 785-786 ◽  
pp. 378-381
Author(s):  
Li Min Wang ◽  
Hong Ming Sun ◽  
Zhong Chao Ma ◽  
Ao Xuan Wang

The uniform hierarchical and microspheric copper oxide (CuO) nanostructures, which have been successfully prepared via a simple one-pot method. The detailed morphology and structure of the synthesized hierarchical and microspheric nanostructures were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and UVvisible spectroscopy. The morphology of CuO particles depends on the ammonium dihydrogen phosphate (ADP) used in the synthesis, the formation mechanisms were proposed based on the experimental results. The catalytic activity of as-synthesized CuO was demonstrated by catalytic oxidation of methylene blue in the presence of hydrogen peroxide (H2O2) and CuO with hierarchical nanostructures was found to be the best catalyst.


2013 ◽  
Vol 03 (01) ◽  
pp. 1350006
Author(s):  
Zhanwu Yu ◽  
Peng Shi ◽  
Wei Ren ◽  
Xiaoqing Wu ◽  
Xi Yao

Three different SrFe x Ti 1-x O 3(x = 0.001, x = 0.005, x = 0.01) ceramics were prepared by the conventional solid-state reaction. The crystalline structure, surface morphology and dielectric properties were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and Agilent 4294A impedance analyzer, respectively. It is shown that both the sintering temperature and doping concentration influence the lattice constant, grain size, dielectric constant and the dielectric loss. When the sintering temperature is higher than 1390°C, the lattice constant, grain size and dielectric constant all decrease with the increase of the doping concentration, except the dielectric loss tangent which shows the opposite trend. Leakage current tests show that the leakage current density falls down with the increase of Fe doping concentration in the given region.


2014 ◽  
Vol 979 ◽  
pp. 347-350
Author(s):  
Rungsarit Koonawoot ◽  
Cherdsak Saelee ◽  
Sakdiphon Thiensem ◽  
Sittiporn Punyanitya

This work reports the influence of chemical composition and sintering schedule on the properties of sintered bodies of hydroxyapatite (HA) bioceramic. The method of preparing sintered bodies by solid state reaction and uniaxial pressing. The raw material used calcium carbonate (CaCO3) and ammonium dihydrogen phosphate (NH4H2PO4) powder as precursors. These powders were mixed at CaCO3: NH4H2PO4 mass ratio of 1:0.697, 1:0.692, 1:0.689, 1:0.685 and 1:0.68, respectively. The compositions in the temperatures range of 800-1300 °C for 3 hour. The sintered bodies were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). Properties including phase, microstructures, porosity and bending strength of the samples. The results show that green bodies can be sintered at 1150 °C for 3 hours. This temperature found that crystals growth, highest of HA phase content in sintered bodies, good density and high efficiency strength properties.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4805
Author(s):  
Hicham Mahfoz Kotb ◽  
Hassan A. Khater ◽  
Osama Saber ◽  
Mohamad M. Ahmad

NSCTO (Na0.5Sm0.5Cu3Ti4O12) ceramics have been prepared by reactive sintering solid-state reaction where the powder was prepared from the elemental oxides by mechanochemical milling followed by conventional sintering in the temperature range 1000–1100 °C. The influence of sintering temperature on the structural and dielectric properties was thoroughly studied. X-ray diffraction analysis (XRD) revealed the formation of the cubic NSCTO phase. By using the Williamson–Hall approach, the crystallite size and lattice strain were calculated. Scanning electron microscope (SEM) observations revealed that the grain size of NSCTO ceramics is slightly dependent on the sintering temperature where the average grain size increased from 1.91 ± 0.36 μm to 2.58 ± 0.89 μm with increasing sintering temperature from 1000 °C to 1100 °C. The ceramic sample sintered at 1025 °C showed the best compromise between colossal relative permittivity (ε′ = 1.34 × 103) and low dielectric loss (tanδ = 0.043) values at 1.1 kHz and 300 K. The calculated activation energy for relaxation and conduction of NSCTO highlighted the important role of single and double ionized oxygen vacancies in these processes.


2019 ◽  
Vol 58 (10) ◽  
pp. 1
Author(s):  
Sivakumar Aswathappa ◽  
Saranraj Arumugam ◽  
Sahaya Jude Dhas Sathiyadhas ◽  
Jose Michael ◽  
Kamala Bharathi Karupannan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document