X-ray Diffraction Study of Molten Te and Tl-Te Alloys

1975 ◽  
Vol 30 (12) ◽  
pp. 1655-1660 ◽  
Author(s):  
Y. Waseda ◽  
S. Tamaki

Abstract X-ray diffraction patterns have been obtained from molten Te at 470, 520 and 570 °C. The heights of the peak maxima in the structure factor were much the same in contrast with those of typical molten metals such as sodium.Molten Tl-Te alloys have been studied by X-ray diffraction for the alloy compositions 25, 33.3, 50, 60 and 75 at% Te at 500 °C and at about 20 °C above the liquidus. The total structure factors for the 25 and 33.3 at% Te alloys were almost the same as that of pure Tl. This implies that the atomic arrangement of these molten alloys is very close to that of pure Tl. Although a drastic change is not found in the general form of the structure factor, the parameter of the range of local atomic order abruptly increases on passing from Tl2Te to more Te-rich alloys. The three partial structures were also evaluated from the observed X-ray intensities assuming that each partial structure is independent of the relative abundance of the constituent elements in the alloys.

1983 ◽  
Vol 38 (10) ◽  
pp. 1093-1097 ◽  
Author(s):  
E. Nassif ◽  
P. Lamparter ◽  
B. Sedelmeyer ◽  
S. Steeb

Abstract The binary molten alloys Mn74Si26 and Mn33.5Si66.5 have been investigated by means of X-ray diffraction. The total structure factors as well as the total pair correlation functions were evaluated. The interatomic distances and total coordination numbers are given. The structural results for Mn74Si26 were compared to those for amorphous Mn74Si23P3 and for a tetrahedral packing model. A pronounced shoulder on the second maximum of the structure factor, which normally is characteristic for the curves obtained with amorphous substances was observed for the Mn74Si26 melt. With the Mn33.5Si66.5 melt, however, this feature cold not be observed. Since with this concentration no glass forming by melt spinning is possible, a correlation between the shape of the second maximum of a total structure factor and the glass forming ability of the corresponding melt is suggested.


A systematic analysis of those liquid binary 2:1 systems (denoted MX 2 ), for which experimental partial structure factors are available from the isotopic substitution method in neutron diffraction, is made using the Bhatia-Thornton (BT) formalism.Particular attention is paid to the origin of the first sharp diffraction peak (FSDP ), which occurs in the measured diffraction patterns for some of the MX 2 systems, since it appears, from recent studies, that this feature is a signature of directional bonding. It is found that FSDPS can occur in all three BT partial structure factors S xB (k). A FSDP feature in the concentration-concentration partial structure factor S cc (k) is not, however, pronounced except in the case of MgCl 2 and the glass forming network melts ZnCl 2 and GeSe 2 . To the extent that these systems can be regarded as ionic melts a FSDP in S cc (k) implies a non-uniformity in the charge distribution on the scale of the intermediate-range order (IRO). The structure of molten GeSe 2 is compared with the structures of molten ZnCl 2 , glassy GeS 2 and glassy Si0 2 . Although the GeSe 2 and ZnCl 2 melts have different short-range order, there are similarities in the observed IRO which can be attributed to the arrangement of the electropositive species M. The essential features of the measured total structure factor for glassy GeS 2 can be reproduced by using the molten GeSe 2 S zB (k). This result lends support to the notion that the S zB (k) for liquid GeSe 2 (and ZnCl 2 ) are characteristic of both the liquid and glassy states of other network glass forming systems. The structures of molten GeSe 2 (or ZnCl 2 ) and glassy Si0 2 are, however, found to be different. The observed discrepancies are largest in the region of the FSDP which signifies pronounced differences in the nature of the IRO for these systems.


1994 ◽  
Vol 49 (4-5) ◽  
pp. 530-534 ◽  
Author(s):  
Th. Halm ◽  
H. Neumann ◽  
W. Hoyer

Abstract Using X-ray diffraction, structure factors and pair correlation functions of several molten Cu-Sb alloys and pure antimony were determined and compared with published structural, thermodynamic and electronic properties. The eutectic concentration Cu37Sb63 was investigated in dependence on temperature, and a model structure factor was calculated applying a segregation model.


2000 ◽  
Vol 55 (3-4) ◽  
pp. 381-389 ◽  
Author(s):  
J. Nomssi Nzali ◽  
W. Hoyer

Liquid copper, bismuth, and eleven bismuth-copper alloys were investigated at temperatures above the liquidus with X-ray diffraction. The experimental procedure was adjusted to reduce the effects of evaporation. The Faber-Ziman total structure factors S(Q) feature a splitting of the first maximum and negative values for Q around 1 Å -1 in a large concentration range. The results are compared to previous neutron diffraction results by Zaiss and Steeb, to square-well potential model calculations by Gopala Rao and Satpathy and to a simple segregation model. The segregation model reproduces the features qualitatively. Partial structure factors are assessed by fitting both neutron and X-ray scattering results with reverse Monte-Carlo simulation


2005 ◽  
Vol 20 (5) ◽  
pp. 1107-1112 ◽  
Author(s):  
R.F. Frindt ◽  
D. Yang ◽  
P. Westreich

The layered compounds MnPS3 and CdPS3 were exfoliated to form single molecular layers of Mn0.8PS3 and Cd0.8PS3 in suspension in water by ion exchange. The x-ray diffraction patterns of the two single-layer suspensions showed profound differences in some of the Bragg peaks, and we demonstrated that the differences are not due to the quality or size of the single layers, but are caused by structure factor modulations of the Warren tail for two-dimensional systems. We also demonstrated that the Cd or Mn vacancies generated in the exfoliation process are not ordered at long range, in contrast to an earlier report of vacancy ordering on intercalated MnPS3.


2013 ◽  
Vol 46 (6) ◽  
pp. 1749-1754 ◽  
Author(s):  
P. Wadley ◽  
A. Crespi ◽  
J. Gázquez ◽  
M.A. Roldán ◽  
P. García ◽  
...  

Determining atomic positions in thin films by X-ray diffraction is, at present, a task reserved for synchrotron facilities. Here an experimental method is presented which enables the determination of the structure factor amplitudes of thin films using laboratory-based equipment (Cu Kα radiation). This method was tested using an epitaxial 130 nm film of CuMnAs grown on top of a GaAs substrate, which unlike the orthorhombic bulk phase forms a crystal structure with tetragonal symmetry. From the set of structure factor moduli obtained by applying this method, the solution and refinement of the crystal structure of the film has been possible. The results are supported by consistent high-resolution scanning transmission electron microscopy and stoichiometry analyses.


1975 ◽  
Vol 30 (6-7) ◽  
pp. 801-805 ◽  
Author(s):  
Y. Waseda ◽  
K. Yokoyama ◽  
K. Suzuki

Abstract X-ray diffraction patterns have been measured on molten alkaline earth metals (Mg, Ca, Sr, and Ba) in the temperature range from the melting points to 880 °C. In all cases the structure factors obtained were temperature insensitive. By the usual Fourier transformation of the structure factors, the atomic radial distribution functions were evaluated. From these the interatomic distances and coordination numbers were estimated. The structural information was applied to a discussion of the electron-transport properties using the Ziman theory.


1983 ◽  
Vol 38 (2) ◽  
pp. 142-148 ◽  
Author(s):  
E. Nassif ◽  
P. Lamparter ◽  
W. Sperl ◽  
S. Steeb

Abstract The total structure factors as well as the total pair correlation functions for amorphous Mg85.5Cu14.5 (by neutron and X-ray diffraction) and for amorphous Mg70Zn30 (by X-ray diffraction) were determined. Both alloys show similar chemical short range order effects. From the total pair correlation function of the Mg85.5Cu14.5 glass, partial coordination numbers and atomic distances could be extracted. Comparison with the structure of crystalline Mg2Cu suggests that the short range order around the copper atoms is similar in the amorphous and the crystalline phase. The densities of both amorphous alloys were measured yielding negative excess volumina.


1995 ◽  
Vol 50 (9) ◽  
pp. 831-836
Author(s):  
R. M. Hagenmayer ◽  
P. Lamparter ◽  
S. Steeb

Abstract The molten alloys Au28.5Mn71.5 and Au68Mn32 are investigated with the energy dispersive X-ray diffraction method which works rather fast so that the evaporation loss of Mn from the molten alloys is kept low. From the observed prepeak follows that both melts are compound-forming but the gold rich melt Au68Mn32 shows only 50% of the short range order existent within the Au28.5Mn71.5 melt. Total structure factors and total pair correlation functions are discussed.


Sign in / Sign up

Export Citation Format

Share Document