Effect of Acceptor Concentration upon Donor Fluorescence Decay and Quantum Yield

1980 ◽  
Vol 35 (10) ◽  
pp. 1030-1035
Author(s):  
C. Bojarski ◽  
E. Grabowska

Abstract The fluorescence decay times (τ/τ0) and quantum yields (η/η0) of rhodamine 6G (donor) in their dependence on the concentration of malachite green (acceptor) in ethanol were measured for the donor to acceptor concentration ratios γᴅ/γᴀ 3.48 and 0.35. At fixed γᴀ, the values of τ/τ0 and η/η0 are markedly lower for the systems with higher γᴅ/γᴀ. The experimental results are compared with the theory of a multistep excitation energy transfer from donor to acceptor. Good agreement between theory and experiment was found for the critical distances ROD = 60.7 Å and ROA = 53.8 Å calculated from spectroscopic data. In the case of γᴅ/γᴀ = 0.35, the experimental results can also be properly described using the Förster-Galanin theory, whereas for the system with γᴅ/γᴀ - 3.48 the multistep energy transfer plays a significant role.

1973 ◽  
Vol 28 (10) ◽  
pp. 1697-1702 ◽  
Author(s):  
C. Bojarski ◽  
F. Burak ◽  
E. Grabowska

Photoluminescence (PL) quantum yields (η/η0) of Na-fluoresceine (donor) in dependence on phloxin (acceptor) concentration in glycerin-water solutions at ratios of donor to acceptor concentration CD/CA equal to 48.2, 14.5 and 2.4 have been measured.Similar measurements have been made on acriflavine (donor) and rhodamine B (acceptor) in methanol for CD/CA = 10 and 0.4. In all systems investigated it was found that the PL-yield η/η0 of the donor at a fixed value of CA is the smaller the bigger is the value of CD/CA. The experimental results have been compared with a theory (Z. Naturforsch. 25 a, 1760 [1970], Acta Phys. Hung. 30, 145 [1971]) describing concentrational changes of the PL-quantum yield. Full agreement of theory with experiment is found and the possibility of multi-step non-radiative excitation energy transfer from donor to acceptor has been proved.


1988 ◽  
Vol 43 (6) ◽  
pp. 583-590 ◽  
Author(s):  
Dieter Oelkrug ◽  
Klaus Rempfer ◽  
Ellen Prass ◽  
Herbert Meier

Abstract The absorption and fluorescence of three isomeric distyrylbenzenes are investigated as function of temperature. From the fluorescence decay times and fluorescence quantum yields two classes of oligostyrylarenes can be distinguished. A decisive criterion for this classification is, whether the first excited singlet state S1 belongs to an allowed or forbidden transition S0→S1.


1990 ◽  
Vol 45 (9-10) ◽  
pp. 980-986 ◽  
Author(s):  
Sn. Bakalova ◽  
L. Biczók ◽  
I. Kavrakova ◽  
T. Bérces

Abstract Absorption spectra and fluorescence properties of 2,3-dihydro-4(1 H)-quinolinone derivatives were studied at room temperature in different solvents. It has been found that the fluorescence quantum yields and fluorescence decay times strongly depend on the molecular structure and solvent polarity. The character and the energy of excited states were determined by PPP and CNDO/S quantum-chemical calculations.


2014 ◽  
Vol 26 (23) ◽  
pp. 8229-8233
Author(s):  
Rabab Sharaf Jassas ◽  
Samy Abdullah El-Daly ◽  
Abdullah M. Asiri ◽  
Salman A Khan

2009 ◽  
Vol 62 (7) ◽  
pp. 692 ◽  
Author(s):  
Toby D. M. Bell ◽  
Sheshanath V. Bhosale ◽  
Kenneth P. Ghiggino ◽  
Steven J. Langford ◽  
Clint P. Woodward

The synthesis of a porphyrin star-pentamer bearing a free-base porphyrin core and four zinc(ii) metalloporphyrins, which are tethered by a conformationally flexible linker about the central porphyrin’s antipody, is described. The synthetic strategy is highlighted by the use of olefin cross metathesis to link the five chromophores together in a directed fashion in high yield. Photoexcitation into the Soret absorption band of the zinc porphyrin chromophores at 425 nm leads to a substantial enhancement of central free-base porphyrin fluorescence, indicating energy transfer from the photoexcited zinc porphyrin (outer periphery) to central free-base porphyrin. Time-resolved fluorescence decay profiles required three exponential decay components for satisfactory fitting. These are attributed to emission from the central free-base porphyrin and to two different rates of energy transfer from the zinc porphyrins to the free-base porphyrin. The faster of these decay components equates to an energy-transfer rate constant of 3.7 × 109 s–1 and an efficiency of 83%, whereas the other is essentially unquenched with respect to reported values for zinc porphyrin fluorescence decay times. The relative contribution of these two components to the initial fluorescence decay is ~3:2, similar to the 5:4 ratio of cis and trans geometric isomers present in the pentamer.


1995 ◽  
Vol 73 (11) ◽  
pp. 1823-1830 ◽  
Author(s):  
Jie Yang ◽  
Mitchell A. Winnik

A series of cross-linked polyurethane samples, labeled with dyes suitable for fluorescence energy transfer experiments, were prepared (donor, phenanthrene; acceptor, anthracene). Fluorescence decay profiles for these samples were measured as a function of acceptor concentration. These decays obey Förster nonradiative energy transfer kinetics, with an energy transfer critical distance (R0) of 26.7 Å. Fluorescence intensities, calculated from the decays by integrating the decay profiles, also fit the Perrin model, with a quenching radius (Rs) of 25.6 Å. The fluorescence decay profiles were further examined with a distribution analysis method, which also revealed uniformly distributed donors and acceptors in the polymer matrices. Keywords: fluorescence quenching, fluorescence decay, phenanthrene, anthracene, polyurethane.


1980 ◽  
Vol 12 (3) ◽  
pp. 263-266 ◽  
Author(s):  
E.J. Fairley ◽  
A.R. Spowart ◽  
B. Blanzat ◽  
J.P. Denis

2021 ◽  
Vol 26 (3) ◽  
pp. 24-29
Author(s):  
S. Nikolaiev ◽  
◽  
V. Pozhar ◽  
M. Dzyubenko ◽  
K. Nikolaiev ◽  
...  

Subject and Purpose. The article is concerned with the spectral-luminescent and lasing characteristics of the radiation from solid-state active media based on polyurethane activated by a binary mixture of dyes. The purpose of these studies is to demonstrate a possibility of the spectral range expansion of the emission from solid-state dye lasers with polyurethane active elements. Methods and Methodology. Specially prepared samples of polyurethane active media having the same donor (Rhodamine 6G) concentration but various acceptor (Sulforhodamine 101) concentrations are experimentally studied for their spectral-luminescent and lasing characteristics. Results. The main spectroscopic characteristics of Rhodamine 6G and Sulforhodamine 101 in polyurethane have been measured, the nonradiative energy transfer parameters in this molecular pair estimated. It has been demonstrated that the matrix emission spectrum can be purposefully transformed by selection of relative concentrations of dyes in the mixture. In a broadband resonator, either a single- or two-band emission with different positions and various intensities of spectral bands is observed depending on the acceptor concentration. In a dispersive resonator under the same conditions, the tuning range of the lasing spectrum expands and extends to the longer wavelengths. Conclusion. The prospects of using donor-acceptor dye mixtures for improving spectral characteristics of polyurethane active elements in solid-state dye lasers have been confirmed. It has been shown that signatures of the emission characteristics of these media are governed by the mechanism of the excitation energy transfer between dye molecules. Lasing has been obtained on polyurethane matrices with the emission wavelength tuning throughout the “green-red” region of the spectrum.


Sign in / Sign up

Export Citation Format

Share Document