Solid State Structure of 2,2,4,4,6,6-Hexa(β-naphthyloxo)cyclophosphazatriene and Dipole Moments of Hexa(aryloxo)cyclophosphazatrienes
The crystal and molecular structure of [NP(OC10H7)2]3 was determined by X-ray analysis.The dipole moments of this compound and of the hexa(phenoxo)cyclotriphosphazatrienes of formula [NP(OC6H3XX′Y)2]3 (X = X′ = H, Y = p-Br; X = m-CH3,. X′ = H. Y = p-Cl; X = X′ = m-CH3, Y = p-Cl; X = X′ = m-CH3, Y = H; X = X′ = H, Y = p-CH(CH3)2; X = X′ = H, Y = p-C(CH3)3) were measured in benzene at 25°C. Crystals of [NP(OC10H7)2]3 are monoclinic with unit cell dimensions a = 24.870(15), b = 7.712(8), c = 27.687(14) Å, β = 115.85(7)°; space group P21/c. The structure was refined to an agreement factor of 0.09. The phosphazene ring deviates (max. deviation 17°) from planarity. and mean distances (A) and angles (°) are P-N 1.58(1). P-O 1.58(1), O-C 1.41(2); P-N-P 120(1), N-P-N 119(1), P-O-C 124(2). The conformations of the naphthyloxo groups at P(2) and P(3) are similar, and different from the group at P(1).Dipole moment analysis showed that the solid state conformation changes in the solution state. The measured value was in agreement with a symmetric conformation in which at the O-P-O plane each naphthyloxo group is rotated by ca. 40-50° from the anti-coplanar arrangement relative to this plane. The dipole moment data for the p-substituted phenoxo derivatives agree with such a conformation, but the analysis of the dipole moment values of phosphazenes having phenoxo groups bearing more than one substituent group and p-CH(CH3)2 substituent failed to do so due to the inherent limitations of the method.