scholarly journals Simple Methylcadmium Alkoxides

2007 ◽  
Vol 62 (10) ◽  
pp. 1339-1342 ◽  
Author(s):  
Surajit Jana ◽  
Tania Pape ◽  
Norbert W. Mitzel

The reaction of dimethylcadmium with alcohols R-OH in equimolar ratio leads to the formation of tetrameric methylcadmium alkoxides with molecular formula [(MeCd)4 (OR)4] [R = Me (1), Et (2) and iPr (3)]. These compounds have been characterised by 1H, 13C NMR and IR spectroscopy, by mass spectrometry, elemental analyses and by X-ray crystallography (for 2 and 3). The solid state structures show distorted cubane-type aggregates with Cd4O4 cores. The structural aspects and the spectroscopic characterisations of these compounds are discussed.

2009 ◽  
Vol 64 (11-12) ◽  
pp. 1513-1524 ◽  
Author(s):  
Uwe Monkowius ◽  
Manfred Zabel ◽  
Michel Fleck ◽  
Hartmut Yersin

The P∩N-ligands Ph2Pqn, 1, Ph2 Piqn, 2, Ph2 Ppym, 3, and the As∩N-ligands Ph2Asqn, 4, Ph2Asiqn, 5, (Ph = phenyl, qn = 8-quinoline, iqn = 1-isoquinoline, pym = 2-pyrimidine) have been synthesized, the ligands 2 and 5 for the first time. Their ligand properties were probed by the synthesis of gold(I) complexes. Reaction with (tht)AuCl (tht = tetrahydrothiophene) yielded the chlorogold complexes Ph2RP-Au-Cl (R = qn, 6; iqn, 7; pym, 8) and Ph2RAs-Au-Cl (R = qn, 9; iqn, 10) in high yields. Further treatment of 7 and 8 with one equivalent of AgBF4 provided the complexes [(Ph2Piqn)Au]BF4, 11, [(Ph2Ppym)Au]BF4, 12, and [(Ph2Piqn)Au(tht)]BF4, 14. For comparison, the previously reported complex [(Ph2Ppy)Au]BF4 (py = pyridine), 13, was re-investigated. The compounds were characterized by elemental analyses, mass spectrometry and NMR spectroscopy. In addition, the solid-state structures of 2, 3, 6, 7, 9 - 14 have been determined by X-ray crystallography. The chloro-gold compounds crystallize in the common rod-like structure known from R3EAuCl (R = aryl, E = P, As) complexes without further aggregation via aurophilic interactions. In all cases the phosphine acts as a monodentate ligand. In the solid state compounds 11 - 13 feature an unprecedented cyclic trinuclear aggregation pattern, in which the Au(I) atoms are linearly coordinated by the bridging phosphine ligands forming a cyclic (P-Au-N)3 arrangement. The resulting twelvemembered ring is further stabilized by Au · · · Au interactions. Due to the presence of these Au · · · Au contacts, 11 - 13 are emissive in the solid state but not in solution


2003 ◽  
Vol 81 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Glen G Briand ◽  
Tristram Chivers ◽  
Masood Parvez

The reaction of PhECl2 with 2 equiv of LiHN-t-Bu has been studied for the series E = As, Sb, and Bi to determine the effect of the phenyl group on subsequent amine condensation processes. For PhAsCl2, the metathesis product PhAs(NH-t-Bu)2 4 was obtained as a colourless oil. Similar reactions involving PhECl2, where E = Sb or Bi, yielded the cyclodipnict(III)azanes PhE(μ-N-t-Bu)2EPh 5 (E = Sb) and 6 (E = Bi), respectively. Treatment of 4 with 2 equiv of n-BuLi produced the dilithium salt Li2[PhAs(N-t-Bu)2] 7a. Products 4, 5, 6, and 7a were characterized by 1H, 7Li (7a), and 13C NMR spectra, while 5, 6, and 7a were also structurally characterized by X-ray crystallography. Compound 7a is dimeric in the solid state via intermolecular Li···N and η6-Li···Ph interactions. The cyclodipnict(III)azanes 5 and 6 have similar structures, with the exocyclic phenyl groups in trans positions relative to the E2N2 ring. This synthetic approach provides a new route to the four-membered rings RE(μ-N-t-Bu)2ER (E = Sb, Bi) and the first example of a bis(organyl)cyclodibism(III)azane.Key words: arsenic, antimony, bismuth, amides, imides.


2013 ◽  
Vol 66 (11) ◽  
pp. 1447 ◽  
Author(s):  
James E. M. Lewis ◽  
James D. Crowley

A series of copper(ii) complexes of the ligand 2,6-bis(pyridin-3-ylethynyl)pyridine have been synthesised and characterised by 1H and DOSY NMR, IR and UV-Vis spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. In solution these systems display almost identical spectroscopic properties, however the solid state structures are shown to vary widely, depending upon the choice of anion. The tetrafluoroborate salt was revealed to be a discrete Cu2L4 cage-like helicate. The tosylate salt, whilst of the same Cu2L4 stoichiometry, was shown to be a coordination polymer. Finally the nitrate salt structure was observed to be a discrete Cu2L2 metallocycle.


Author(s):  
John Bacsa ◽  
Maurice Okello ◽  
Pankaj Singh ◽  
Vasu Nair

The conformation and tautomeric structure of (Z)-4-[5-(2,6-difluorobenzyl)-1-(2-fluorobenzyl)-2-oxo-1,2-dihydropyridin-3-yl]-4-hydroxy-2-oxo-N-(2-oxopyrrolidin-1-yl)but-3-enamide, C27H22F3N3O5, in the solid state has been resolved by single-crystal X-ray crystallography. The electron distribution in the molecule was evaluated by refinements with invarioms, aspherical scattering factors by the method of Dittrichet al.[Acta Cryst.(2005), A61, 314–320] that are based on the Hansen–Coppens multipole model [Hansen & Coppens (1978).Acta Cryst.A34, 909–921]. The β-diketo portion of the molecule exists in the enol form. The enol –OH hydrogen forms a strong asymmetric hydrogen bond with the carbonyl O atom on the β-C atom of the chain. Weak intramolecular hydrogen bonds exist between the weakly acidic α-CH hydrogen of the keto–enol group and the pyridinone carbonyl O atom, and also between the hydrazine N—H group and the carbonyl group in the β-position from the hydrazine N—H group. The electrostatic properties of the molecule were derived from the molecular charge density. The molecule is in a lengthened conformation and the rings of the two benzyl groups are nearly orthogonal. Results from a high-field1H and13C NMR correlation spectroscopy study confirm that the same tautomer exists in solution as in the solid state.


2012 ◽  
Vol 65 (7) ◽  
pp. 883 ◽  
Author(s):  
Philip C. Andrews ◽  
Richard L. Ferrero ◽  
Peter C. Junk ◽  
Jonathan G. Maclellan ◽  
Roshani M. Peiris

Two new substituted thiobenzoic acids, m-nitrothiobenzoic and m-sulfothiobenzoic acid, and six (four new) homo- and heteroleptic bismuth(iii) compounds derived from thiobenzoic acid and substituted thiobenzoic acid have been synthesised and fully characterised using both solvent free and solvent mediated methods; Bi(SC(=O)C6H5)3 (3), PhBi(SC(=O)C6H5)2 (4), Ph2Bi(SC(=O)C6H5) (5), Bi(SC(=O)C6H4-m-NO2)3 (6), PhBi(SC(=O)C6H4-m-NO2)2 (7), and PhBi(SC(=O)C6H4-m-SO3) (8). The solid-state structures of the previously reported Bi(SC(=O)C6H5)3 (3) and PhBi(SC(=O)]C6H5)2 (4) complexes have now been confirmed by X-ray crystallography. In the solid-state complex 3 forms a column-like polymeric structure resembling stacked bowls through pyramidal intermolecular Bi–S3 bonds of distance 3.359 Å, providing a Bi(iii) centre with a nine coordinate environment. Complex 4 forms discrete tetrameric units cemented by long intermolecular Bi–S (3.774 Å), Bi–O(= C) (3.030, 3.071 Å) and Bi–C bonds (3.627 Å). The complexes were assessed for their activity against three strains of Helicobacter pylori and all show a minimum inhibitory concentration of 6.25 µg mL–1, indicating that the high level of bactericidal activity is insensitive to the degree of substitution at the Bi(iii) centre.


Author(s):  
Jieye Lin ◽  
Reagan J. Meredith ◽  
Allen G. Oliver ◽  
Ian Carmichael ◽  
Anthony S. Serianni

13C-Labeled mono- and disaccharides were studied by X-ray crystallography and solid-state 13C NMR to determine the dependence of 2JC1,C3 in aldopyranosyl rings on the C1–C2–O2–H torsion angle, θ2, involving C2 of the C1–C2–C3 coupling pathway.


2006 ◽  
Vol 2006 (6) ◽  
pp. 1127-1129 ◽  
Author(s):  
Reinhart Ahlrichs ◽  
Dieter Fenske ◽  
Alexander Rothenberger ◽  
Claudia Schrodt ◽  
Stephan Wieber

2007 ◽  
Vol 80 (9) ◽  
pp. 1776-1779 ◽  
Author(s):  
Satoshi Takara ◽  
Andrei S. Batsanov ◽  
Douglas J. Schaffer ◽  
Michael Takase ◽  
Janice A. Kunishige ◽  
...  

2001 ◽  
Vol 05 (09) ◽  
pp. 702-707 ◽  
Author(s):  
LI CHEN ◽  
JESSE B. FOX ◽  
GEUN-BAE YI ◽  
MASOOD A. KHAN ◽  
GEORGE B. RICHTER-ADDO

Para-aminosubstituted nitrosoarenes react with Ru ( CO )( OEP ) or [ Co ( TPP )( THF )2] SbF 6 (OEP2- = 2,3,7,8,12,13,17,18-octaethylporphyrinato dianion, TPP2- = 5,10,15,20-tetraphenylporphyrinato dianion) to generate Ru ( OEP )( ONC 6 H 4 NMe 2)2 and [ Co ( TPP )( ONC 6 H 4 NR 2)2] SbF 6 ( R = Me , Et ), respectively, in fair to high yields. These N -bound nitrosoarene complexes have been characterized by spectroscopic methods. The complexes Ru ( OEP )( ONC 6 H 4 NMe 2)2 and [ Co ( TPP )( ONC 6 H 4 NMe 2)2] ClO 4 have also been characterized by single-crystal X-ray crystallography. Their structures represent the first reported solid-state structures of Ru and Co porphyrins containing C-nitroso ligands.


2001 ◽  
Vol 79 (5-6) ◽  
pp. 607-612 ◽  
Author(s):  
Man-Kit Lau ◽  
Joyce LC Chim ◽  
Wing-Tak Wong ◽  
Ian D Williams ◽  
Wa-Hung Leung

Reaction of [OsO4] with C7H7MgBr (C7H7 = 2-methylphenyl) followed by column chromatography afforded the reported osmium tetraaryl [Os(C7H7)4] along with the oxo-osmium(VI) ([OsO(C7H7)4]) (1) (13%) and the dioxo-osmium(VI) ([OsO2(C7H7)2]) (2) (25%) complexes. Treatment of [OsO4] with C8H9MgBr (C8H9 = 2,5-dimethylphenyl) gave a mixture of [Os(C8H9)4] (3) (34%) and [OsO(C8H9)4] (4) (4%) while that with C8H9OMgBr (C8H9O = 4-methoxy-2-methylphenyl) afforded [OsO(C8H9O)4] (5) in 20% yield. Oxidation of 3 with 3-chloroperoxybenzoic acid afforded 4 in good yield. The solid-state structures of 1 and 4 have been established by X-ray crystallography. Crystals of 1 are tetragonal with a = 13.080(1) and c = 6.6506(5) Å, V = 1137.9(1) Å3, Z = 2, and space group of P4/n; while those of 4 are tetragonal with a = 13.593(2) and c = 7.377(2) Å, V = 1363.0(5) Å3, Z = 4, and space group of P4/n. The geometry around osmium in both complexes is square pyramidal with the oxo ligand occupying apical position. The Os—O and Os—C distances in 1 are 1.652(2) and 2.084(1) Å, respectively, while those in 4 are 1.688(7) and 2.088(4) Å, respectively. The cyclic voltammograms of the monooxo aryl osmium(VI) compounds show reversible Os(VI/V) couple at around –1.4 V vs. ferrocene/ferrocenium couple.Key words: osmium(VI), oxo aryl complexes.


Sign in / Sign up

Export Citation Format

Share Document