O n the Mechanism of Inactivation and ATP-Dependent Reactivation of Rat Liver Tyrosine Aminotransferase
Abstract The mechanism of in vitro inactivation and ATP-dependent rapid reactivation of rat liver tyrosine aminotransferase by a membrane-bound system from rat liver and kidney cortex and the nucleotide specificity of this process was investigated using partially purified tyrosine amino transferase as a substrate. Adenosine 5′-triphosphate (ATP) could be replaced by guanosine 5′-tri-phosphate (GTP), whereas inosine 5′-triphosphate (ITP) was less effective. During reactivation [γ-32P]A T P was incorporated into the enzyme and not excorporated by incubation of the labeled enzyme with excess non-radioative ATP. Inactivation of labeled tyrosine aminotransferase by a particulate fraction led to a decrease protein-bound radioactivity concomitant with an increase of [32P] orthophosphate. This points to a phosphorylation and dephosphorylation mechanism in the regulation of tyrosine aminotransferase activity.