Monitoring of changes in 5-n-alkylresorcinols during wheat seedling development

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Elżbieta G. Magnucka ◽  
Małgorzata P. Oksińska ◽  
Stanisław J. Pietr

AbstractFor seven days of wheat growth, caryopsis remained the main source of 5-n-alkylresorcinols with C19 and/or C21 homolog as a main compound. Shoot contained small amount of these phenolic lipids; their average content was 3.23% of level obtained in the whole seedling. Moreover, 41.38% of resorcinolic lipids of seven-day-old shoot was accumulated in part of leaf covered by coleoptile. Interestingly, a removal of 1.07% of the primary pool of kernel alkylresorcinols by short-term washing (10 s) of wheat seed with acetone before planting decreased their level only in seed of seven-day old seedling. Compared to the respective controls, this treatment did not affect the amount of these lipids in the green part of seedling that proved that de novo synthesis of 5-n-alkylresorcinols takes place in shoots. The very similar homolog profiles of these lipids in four- and seven-day-old shoots turned out to be markedly less diversified than those found in respective seed samples. Compared to the mature wheat caryopsis, the rise in the content of very-long-chain homologs was observed only in the oldest shoot. Their increased accumulation was probably connected with formation of cuticular layer providing the defensive barrier against various phytopathogens.

Author(s):  
Waltraud Scherer-Pongratz ◽  
Peter Christian Endler

Objective: Performing a study on a wheat growth bio assay with a homeopathic dilution of gibberellic acid at different seasons of the year. Methods: Grains of winter wheat (Triticum aestivum, Capo variety) were observed under the influence of extremely diluted gibberellic acid (10-30, 30x). Analogously prepared water was used for control. 15 experiments were performed, 9 in autumn season (5 researchers, 4,440 grains per group), and 6 in winter / spring (4 researchers, with 3,140 grains per group). Results: All 9 autumn experiments showed less stalk growth in the verum group (p > 0.01 in 4 cases, p > 0.05 in 3, trend in 2 cases). Mean stalk lengths (mm) were 46.97 + 20.50 for verum and 50.66 + 19.77 for control at grain level (N = 4,440 per group) and + 3.87 and + 3.38 respectively at dish level (217 cohorts of 20 or 25 grains per treatment group). Verum stalk length (92.72%) was 7.28% smaller than control stalk length (100%). In contrast, no reliable effect was found in experiments performed in winter / spring (less stalk growth in 1 case, no difference in 1, more growth in 3 cases). Overall verum stalk length (103.64%) was 3.64% slightly greater than control stalk length (100%). Data were found to be homogeneous within the control groups as well as within the verum groups. Conclusion: Results suggest that especially in the experiments performed in autumn, there was an influence of gibberellic acid 30x on wheat seedling development. The effect size is small when calculation is done on the basis of grains (d = 0.18) but high when done on the basis of dishes (d = 1.02). In contrast, no reliable effect was found in experiments performed in winter / spring. Further experiments should thus be performed in the autumn season.


2020 ◽  
Vol 92 (8) ◽  
pp. 1329-1340
Author(s):  
A. G. Kolmakov ◽  
A. S. Baikin ◽  
S. V. Gudkov ◽  
K. N. Belosludtsev ◽  
E. O. Nasakina ◽  
...  

AbstractThe paper describes synthesis and testing of novel biodegradable polylactide-based polymer membranes with desired mechanical properties, which are capable of sustained and directed release of biomacromolecules with high molecular weight (in particular, streptokinase; m.w. 47 kDa). Streptokinase is a pharmaceutical agent, possessing a pronounced thrombolytic activity. The membranes synthesized had a percentage elongation of 2–11% and tensile strength of 25–85 MPa. They were biodegradable – yet being stored in aqueous media in the absence of biological objects, would be dissolved by no more than 10% in 6 months. The synthesized membranes were capable of controlled release of streptokinase into the intercellular space, with the enzyme retaining more than 90% of its initial activity. The rate of streptokinase release from the membranes varied from 0.01 to 0.04 mg/day per cm2 of membrane surface. The membrane samples tested in the work did not have any short-term toxic effects on the cells growing de novo on the membrane surface. The mitotic index of those cells was approximately 1.5%, and the number of non-viable cells on the surface of the polymer films did not exceed 3–4% of their total amount. The implantation of the synthesized polymers – as both individual films and coatings of nitinol stents – was not accompanied by any postoperative complications. The subsequent histological examination revealed no abnormalities. Two months after the implantation of polymer films, only traces of polylactide were found in the implant-surrounding tissues. The implantation of stents coated with streptokinase-containing polymers resulted in the formation of a mature and thick connective-tissue capsules. Thus, the polylactide membranes synthesized and tested in this work are biodegradable, possess the necessary mechanical properties and are capable of sustained and directed release of streptokinase macromolecules.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
William Bort ◽  
Igor I. Baskin ◽  
Timur Gimadiev ◽  
Artem Mukanov ◽  
Ramil Nugmanov ◽  
...  

AbstractThe “creativity” of Artificial Intelligence (AI) in terms of generating de novo molecular structures opened a novel paradigm in compound design, weaknesses (stability & feasibility issues of such structures) notwithstanding. Here we show that “creative” AI may be as successfully taught to enumerate novel chemical reactions that are stoichiometrically coherent. Furthermore, when coupled to reaction space cartography, de novo reaction design may be focused on the desired reaction class. A sequence-to-sequence autoencoder with bidirectional Long Short-Term Memory layers was trained on on-purpose developed “SMILES/CGR” strings, encoding reactions of the USPTO database. The autoencoder latent space was visualized on a generative topographic map. Novel latent space points were sampled around a map area populated by Suzuki reactions and decoded to corresponding reactions. These can be critically analyzed by the expert, cleaned of irrelevant functional groups and eventually experimentally attempted, herewith enlarging the synthetic purpose of popular synthetic pathways.


2000 ◽  
Vol 55 (3-4) ◽  
pp. 175-182 ◽  
Author(s):  
Stewart B Wuest ◽  
Stephan L Albrecht ◽  
Katherine W Skirvin

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8088 ◽  
Author(s):  
Marcelo González-Aravena ◽  
Nathan J. Kenny ◽  
Magdalena Osorio ◽  
Alejandro Font ◽  
Ana Riesgo ◽  
...  

Although the cellular and molecular responses to exposure to relatively high temperatures (acute thermal stress or heat shock) have been studied previously, only sparse empirical evidence of how it affects cold-water species is available. As climate change becomes more pronounced in areas such as the Western Antarctic Peninsula, both long-term and occasional acute temperature rises will impact species found there, and it has become crucial to understand the capacity of these species to respond to such thermal stress. Here, we use the Antarctic sponge Isodictya sp. to investigate how sessile organisms (particularly Porifera) can adjust to acute short-term heat stress, by exposing this species to 3 and 5 °C for 4 h, corresponding to predicted temperatures under high-end 2080 IPCC-SRES scenarios. Assembling a de novo reference transcriptome (90,188 contigs, >93.7% metazoan BUSCO genes) we have begun to discern the molecular response employed by Isodictya to adjust to heat exposure. Our initial analyses suggest that TGF-β, ubiquitin and hedgehog cascades are involved, alongside other genes. However, the degree and type of response changed little from 3 to 5 °C in the time frame examined, suggesting that even moderate rises in temperature could cause stress at the limits of this organism’s capacity. Given the importance of sponges to Antarctic ecosystems, our findings are vital for discerning the consequences of short-term increases in Antarctic ocean temperature on these and other species.


2020 ◽  
Author(s):  
Markus Pfenninger ◽  
Halina Binde Doria ◽  
Jana Nickel ◽  
Anne Thielsch ◽  
Klaus Schwenk ◽  
...  

AbstractMutations are the ultimate source of heritable variation and therefore the fuel for evolution, but direct estimates exist only for few species. We estimated the spontaneous nucleotide mutation rate among clonal generations in the waterflea Daphnia galeata with a short term mutation accumulation approach. Individuals from eighteen mutation accumulation lines over five generations were deep genome sequenced to count de novo mutations that were not present in a pool of F1 individuals, representing the parental genotype. We identified 12 new nucleotide mutations in 90 clonal generational passages. This resulted in an estimated haploid mutation rate of 0.745 x 10-9 (95% c.f. 0.39 x 10-9 − 1.26 x 10-9), which is slightly lower than recent estimates for other Daphnia species. We discuss the implications for the population genetics of Cladocerans.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 511 ◽  
Author(s):  
Hollis Wright ◽  
Mithila Handu ◽  
Allen Jankeel ◽  
Ilhem Messaoudi ◽  
Oleg Varlamov

White adipose tissue (WAT) hypertrophy is an essential hallmark of obesity and is associated with the activation of resident immune cells. While the benefits of caloric restriction (CR) on health span are generally accepted, its effects on WAT physiology are not well understood. We previously demonstrated that short-term CR reverses obesity in male rhesus macaques exposed to a high-fat Western-style diet (WSD). Here, we analyzed subcutaneous WAT biopsies collected from this cohort of animals before and after WSD and following CR. This analysis showed that WSD induced adipocyte hypertrophy and inhibited β-adrenergic-simulated lipolysis. CR reversed adipocyte hypertrophy, but WAT remained insensitive to β-adrenergic agonist stimulation. Whole-genome transcriptional analysis revealed that β3-adrenergic receptor and de novo lipogenesis genes were downregulated by WSD and remained downregulated after CR. In contrast, WSD-induced pro-inflammatory gene expression was effectively reversed by CR. Furthermore, peripheral blood monocytes isolated during the CR period exhibited a significant reduction in the production of pro-inflammatory cytokines compared to those obtained after WSD. Collectively, this study demonstrates that short-term CR eliminates an obesity-induced pro-inflammatory response in WAT and peripheral monocytes.


2002 ◽  
Vol 87 (04) ◽  
pp. 674-683 ◽  
Author(s):  
John Martens ◽  
Lambert Dorssers ◽  
Jan Klijn ◽  
John Foekens ◽  
Anieta Sieuwerts

SummaryIn breast stroma urokinase plasminogen activator (uPA) is predominantly expressed by fibroblasts located in the near vicinity of tumor cells, and fibroblast-derived insulin-like growth factor-1 (IGF-1) may be involved in inhibiting the expression of uPA in these fibroblasts. To investigate a possible role for fibroblast growth factors (FGFs), we evaluated the expression of components of the PA system and the IGF system in normal and tumor-tissue-derived human breast fibroblasts exposed to various FGFs in vitro. mRNA analysis revealed that FGF-1, FGF-2 and FGF-4 induced the mRNA expression levels of uPA, tPA, uPAR, PAI-1 and PAI-2, and reduced those of IGF-1, IGF-1R, IGF-2R and IGFBP-4, without significantly affecting the levels of IGFBP-3, IGFBP-5 and IGFBP-6 mRNA. Concerning the expression of IGF-2 mRNA, the effects mediated by FGF-1, FGF-2 and FGF-4 were divergent. In general, the effects elicited by FGF-1 on the various mRNA levels studied were rapid and short-term. Those mediated by FGF-2 overall lagged behind but were longer-lasting. For FGF-4 an in between pattern was observed. Blocking transcription and translation demonstrated that a) both the FGF-1 and FGF-2 induced effects were the result of altered gene transcription or mRNA stability, b) the short-term effects mediated by FGF-1 and FGF-2 required de novo protein synthesis, and c) the long-term effects elicited by FGF-2 did not depend on de novo protein synthesis during the first 24 h, but were triggered by proteins produced or made available thereafter. The data presented propose that of the FGFs studied (FGF-1, -2, -4, -5, and -7), FGF-2 is the most attractive target for therapeutical strategies aimed at diminishing the contribution of stromal fibroblasts in the PA-directed breast tumor proteolysis.


Rheumatology ◽  
2020 ◽  
Vol 59 (Supplement_2) ◽  
Author(s):  
Saion Chatterjee ◽  
Helena Marzo-Ortega ◽  
Dennis McGonagle ◽  
Alexander N Bennett ◽  
Raj Sengupta

Abstract Background MRI offers an enhanced opportunity to detect early spinal changes of axial spondyloarthritis (axSpA), by identifying characteristic inflammatory and structural lesions, so called Romanus lesions. These include bone marrow oedema lesions on the vertebral corners and fatty replacement of these lesions, both highly suggestive features of axSpA. Current evidence suggests that treatment of these lesions requires early biologic therapy, hence early identification is imperative. We evaluate the prevalence and variation of vertebral corner lesions on short-term repeat MRI scans in patients with suspected early axSpA. Methods 109 MRI scans were performed at baseline and at 4, 8 and 12-weeks on 30 patients with suspected axial spondyloarthritis, who fulfilled the ASAS inflammatory back pain criteria, and had normal sacroiliac joints (SIJs) on antero-posterior pelvis radiographs. The protocol included sagittal T1 and short-tau inversion recovery of the cervico-thoracic spine and thoracolumbar spine. Results 29 patients completed the study (66% were male, 72% HLA-B2-positive). All patients had ≥1 clinical spondyloarthritis (SpA) feature and 86% had ≥2. 13 patients used NSAIDs regularly over the 12-week study period. Overall, 40 corner lesions were present in participants at baseline scanning. 67 new vertebral corner lesion changes occurred at different time points over the follow-up period compared to baseline. 43 changes were new or worsening lesions, while 24 changes were an improvement or resolution of a lesion. 48.6% (14/29) of patients had a minimum of 1 corner lesion present at baseline. 78.5% (11/14) of patients with baseline corner lesions experienced either a decrease/improvement or increase/progression of spinal corner lesions. 20.7% (6/29) of patients demonstrated transient corner lesions at baseline or follow-up with resolution by the 12-week scan (likely artefact). 5/29 patients met spinal imaging criteria suggestive of AS (3 at baseline, 1 only transiently at 1 month, and 1 which persisted from interval scanning). At 12-weeks, 13.8% of patients had at least 3 concomitant baseline or de-novo vertebral corner lesions present (minimum number needed for diagnostic significance). 75% of these patients did not have evidence of concomitant SIJ changes (10.3% of all patients). HLA-B27 status, gender, NSAID use, and number of SpA features were not associated with corner lesion development or improvement. Conclusion Approximately half of all patients who meet ASAS criteria for inflammatory back pain, but do not meet ASAS criteria for axSpA, demonstrated at least 1 vertebral corner lesion on MRI scan at baseline, which may represent artefact or a prelude to future disease progression. 13.8% of patients had at least 3 concomitant baseline or de-novo vertebral corner lesions present on MRI at the conclusion of 12-weeks of follow-up. In cases of suspected axSpA with negative SIJ MRI imaging, 10.3% of patients had significant spinal evidence of axSpA on MRI, highlighting the importance of spinal imaging and monitoring as part of the diagnostic work-up for axSpA. Disclosures S. Chatterjee None. H. Marzo-Ortega None. D. McGonagle None. A. Bennett None. R. Sengupta None.


Sign in / Sign up

Export Citation Format

Share Document