scholarly journals Mode of photoexcited C60 fullerene involvement in potentiating cisplatin toxicity against drug-resistant L1210 cells

Bioimpacts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 211-217
Author(s):  
Daria Franskevych ◽  
Svitlana Prylutska ◽  
Iryna Grynyuk ◽  
Ganna Pasichnyk ◽  
Liudmyla Drobot ◽  
...  

Introduction: C60 fullerene has received great attention as a candidate for biomedical applications. Due to unique structure and properties, C60 fullerene nanoparticles are supposed to be useful in drug delivery, photodynamic therapy (PDT) of cancer, and reversion of tumor cells’ multidrug resistance. The aim of this study was to elucidate the possible molecular mechanisms involved in photoexcited C60 fullerene-dependent enhancement of cisplatin toxicity against leukemic cells resistant to cisplatin.Methods: Stable homogeneous pristine C60 fullerene aqueous colloid solution (10-4 М, purity 99.5%) was used in the study. The photoactivation of C60 fullerene accumulated by L1210R cells was done by irradiation in microplates with light-emitting diode lamp (420-700 nm light, 100 mW·cm-2). Cells were further incubated with the addition of Cis-Pt to a final concentration of 1 μg/mL. Activation of p38 MAPK was visualized by Western blot analysis. Flow cytometry was used for the estimation of cells distribution on cell cycle. Mitochondrial membrane potential (Δψm) was estimated with the use of fluorescent potential-sensitive probe TMRE (Tetramethylrhodamine Ethyl Ester). Results: Cis-Pt applied alone at 1 μg/mL concentration failed to affect mitochondrial membrane potential in L1210R cells or cell cycle distribution as compared with untreated cells. Activation of ROS-sensitive proapoptotic p38 kinase and enhanced content of cells in subG1 phase were detected after irradiation of L1210R cells treated with 10-5M C60 fullerene. Combined treatment with photoexcited C60 fullerene and Cis-Pt was followed by the dissipation of Δψm at early-term period, blockage of cell transition into S phase, and considerable accumulation of cells in proapoptotic subG1 phase at prolonged incubation.Conclusion: The effect of the synergic cytotoxic activity of both agents allowed to suppose that photoexcited C60 fullerene promoted Cis-Pt accumulation in leukemic cells resistant to Cis-Pt. The data obtained could be useful for the development of new approaches to overcome drug-resistance of leukemic cells.

2020 ◽  
Vol 20 (10) ◽  
pp. 1188-1196
Author(s):  
Heriberto Torres-Moreno ◽  
Maria C. Marcotullio ◽  
Carlos Velazquez ◽  
Víctor M. Arenas-Luna ◽  
Salomón Hernández-Gutiérrez ◽  
...  

Background: Cucurbitacin IIb (CIIb) from Ibervillea sonorae has a high capacity to suppress cancer cell proliferation and induce apoptosis. This study investigated the molecular mechanisms related to the antiproliferative and apoptosis induction capacity of CIIb in HeLa cells. Materials and Methods: The cell viability and anti-proliferative effect of CIIb were evaluated by using the trypan blue exclusion assay. The effect of CIIb on the mitochondrial membrane potential was determined by flow cytometry using JC-1. The activity of caspase-3 and caspase-9 was evaluated by flow cytometry using commercial kits. The effect of CIIb on the cell cycle was investigated using Fluorescence-Activated Cell Sorting (FACS) analysis. Western blot analysis was used to evaluate both the inhibitory effect of CIIb on the STAT3 signaling pathway and cyclin –B1, and DNA damage by the comet assay. Results: CIIb triggers disruption of the mitochondrial membrane potential (Δψm) and consequently activated the caspases -3 and -9, as a result of the activation of the intrinsic pathway of the apoptosis. Likewise, the CIIbinduced cell cycle was arrested in S and G2/M after 24h of treatment. CIIb also reduced the expression of STAT3 and cyclin –B1. Finally, CIIb produced an antiproliferative effect at 48 and 72 h, inducing DNA damage. Conclusion: These results demonstrate CIIb-induced apoptosis and cell cycle arrest in HeLa through the inhibition of STAT3.


2019 ◽  
Vol 18 (9) ◽  
pp. 1313-1322 ◽  
Author(s):  
Manjula Devi Ramamoorthy ◽  
Ashok Kumar ◽  
Mahesh Ayyavu ◽  
Kannan Narayanan Dhiraviam

Background: Reserpine, an indole alkaloid commonly used for hypertension, is found in the roots of Rauwolfia serpentina. Although the root extract has been used for the treatment of cancer, the molecular mechanism of its anti-cancer activity on hormonal independent prostate cancer remains elusive. Methods: we evaluated the cytotoxicity of reserpine and other indole alkaloids, yohimbine and ajmaline on Prostate Cancer cells (PC3) using MTT assay. We investigated the mechanism of apoptosis using a combination of techniques including acridine orange/ethidium bromide staining, high content imaging of Annexin V-FITC staining, flow cytometric quantification of the mitochondrial membrane potential and Reactive Oxygen Species (ROS) and cell cycle analysis. Results: Our results indicate that reserpine inhibits DNA synthesis by arresting the cells at the G2 phase and showed all standard sequential features of apoptosis including, destabilization of mitochondrial membrane potential, reduced production of reactive oxygen species and DNA ladder formation. Our in silico analysis further confirmed that indeed reserpine docks to the catalytic cleft of anti-apoptotic proteins substantiating our results. Conclusion: Collectively, our findings suggest that reserpine can be a novel therapeutic agent for the treatment of androgen-independent prostate cancer.


2019 ◽  
Vol 19 (4) ◽  
pp. 557-566 ◽  
Author(s):  
Nerella S. Goud ◽  
Mahammad S. Ghouse ◽  
Jatoth Vishnu ◽  
Jakkula Pranay ◽  
Ravi Alvala ◽  
...  

Background: Human Galectin-1, a protein of lectin family showing affinity towards β-galactosides has emerged as a critical regulator of tumor progression and metastasis, by modulating diverse biological events including homotypic cell aggregation, migration, apoptosis, angiogenesis and immune escape. Therefore, galectin-1 inhibitors might represent novel therapeutic agents for cancer. Methods: A new series of heterocyclic imines linked coumarin-thiazole hybrids (6a-6r) was synthesized and evaluated for its cytotoxic potential against a panel of six human cancer cell lines namely, lung (A549), prostate (DU-145), breast (MCF-7 & MDA-MB-231), colon (HCT-15 & HT-29) using MTT assay. Characteristic apoptotic assays like DAPI staining, cell cycle, annexin V and Mitochondrial membrane potential studies were performed for the most active compound. Furthermore, Gal-1 inhibition was confirmed by ELISA and fluorescence spectroscopy. Results: Among all, compound 6g 3-(2-(2-(pyridin-2-ylmethylene) hydrazineyl) thiazol-4-yl)-2H-chromen-2- one exhibited promising growth inhibition against HCT-15 colorectal cancer cells with an IC50 value of 1.28 ± 0.14 µM. The characteristic apoptotic morphological features like chromatin condensation, membrane blebbing and apoptotic body formation were clearly observed with compound 6g on HCT-15 cells using DAPI staining studies. Further, annexin V-FITC/PI assay confirmed effective early apoptosis induction by treatment with compound 6g. Loss of mitochondrial membrane potential and enhanced ROS generation were confirmed with JC-1 and DCFDA staining method, respectively by treatment with compound 6g, suggesting a possible mechanism for inducing apoptosis. Moreover, flow cytometric analysis revealed that compound 6g blocked G0/G1 phase of the cell cycle in a dose-dependent manner. Compound 6g effectively reduced the levels of Gal-1 protein in a dose-dependent manner. The binding constant (Ka) of 6g with Gal-1 was calculated from the intercept value which was observed as 1.9 x 107 M-1 by Fluorescence spectroscopy. Molecular docking studies showed strong interactions of compound 6g with Gal-1 protein. Conclusion: Our studies demonstrate the anticancer potential and Gal-1 inhibition of heterocyclic imines linked coumarin-thiazole hybrids.


1993 ◽  
Vol 79 (3) ◽  
pp. 276-276
Author(s):  
Yvan Canitrot ◽  
Dominique Lautier ◽  
Pierre Viallet ◽  
Jean-Marie Salmon

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Manman Gu ◽  
Jing Xu ◽  
Chunyang Han ◽  
Youxi Kang ◽  
Tengfei Liu ◽  
...  

Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines (TCM), exhibits a strong antimicrobial activity in the treatment of diarrhea. However, it causes human as well as animal toxicity from heavy dosage. The present study was conducted to investigate the cytotoxicity of berberine and its possible trigger mechanisms resulting in cell cycle arrest, DNA damage, ROS (reactive oxygen species) level, mitochondrial membrane potential change, and cell apoptosis in L929 murine fibroblast (L929) cells. The cells were culturedin vitroand treated with different concentrations of berberine for 24 h. The results showed that cell viability was significantly decreased in a subjected dose-dependent state; berberine concentrations were higher than 0.05 mg/mL. Berberine at a concentration above 0.1 mg/mL altered the morphology of L929 cells. Cells at G2/M phase were clear that the level of ROS and cell apoptosis rates increased in 0.1 mg/mL group. Each DNA damage indicator score (DIS) increased in groups where concentration of berberine was above 0.025 mg/mL. The mitochondrial membrane potential counteractive balance mechanics were significantly altered when concentrations of berberine were above 0.005 mg/mL. In all, the present study suggested that berberine at high dosage exhibited cytotoxicity on L929 which was related to resultant: cell cycle arrest; DNA damage; accumulation of intracellular ROS; reduction of mitochondrial membrane potential; and cell apoptosis.


2014 ◽  
Vol 229 ◽  
pp. S51
Author(s):  
Celia Fernandez-Blanco ◽  
Ana Juan-Garcia ◽  
Guillermina Font ◽  
Maria-Jose Ruiz

2000 ◽  
Vol 4 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Michael Facompré ◽  
Nicole Wattez ◽  
Jérôme Kluza ◽  
Amélie Lansiaux ◽  
Christian Bailly

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5138-5138
Author(s):  
Juan J Gu ◽  
Lianjuan Yang ◽  
Cory Mavis ◽  
Matthew J. Barth ◽  
Francisco J. Hernandez-Ilizaliturri

Abstract Background: Relapsed/refractory diffuse large B-cell lymphoma (DLBCL) patients previously treated with rituximab-based therapy have poor clinical outcome, according to the results from collaborative trial in relapsed aggressive lymphoma (CORAL) study. It stresses the need to identify and/or optimize novel targeted agents. To better understand the molecular mechanisms underlining the acquired resistance to rituximab, we generated and characterized several rituximab-resistant DLBCL cell lines (RRCLs). Itraconazole, an oral antifungal agent, was reported had novel anticancer activity in basal cell carcinoma, non-small cell lung cancer and prostate cancer. In our current work, we define and characterize the anticancer activity of itraconazole in preclinical rituximab-sensitive or -resistant lymphoma models. Methods: A panel of rituximab-sensitive (RSCL) and rituximab-resistant (RRCL) cell lines were exposed to escalating doses of itraconazole (0-20μM) for 24, 48 and 72h. Changes in cell viability and cell cycle distribution were evaluated using the Presto Blue assay and flow cytometry respectively. IC50 was calculated by Graphpad Prism6 software. Loss of mitochondrial membrane potential (∆ψm) following itraconazole exposure was assessed by DiOC6 and flow cytometry. Subsequently lymphoma cells were exposed to itraconazole or vehicle and various chemotherapy agents such as doxorubicin (1µM), dexamethasone (1µM), cDDP (20μg/ml), bortezomib (20nM), carfilzomib (20nM) or MLN2238 (20nM) for 48 hours. Coefficient of synergy was calculated using the CalcuSyn software. Changes in hexokinase II (HKII), Voltage dependent anion channel protein (VDAC), LC3 and BCL-xL expression levels were determined by western blotting after exposure cells to itraconazole. VDAC-HKII interactions following in vitro exposure to itraconazole were determined by immunoprecipitation of VDAC and probing for HKII in RSCL and RRCLs. Result:Itraconazole consistently showed potent, specific, dose-and time- dependent inhibition of all our sensitive and resistant lymphoma cell lines. In vitro exposure cells to itraconazole resulted in a loss of mitochondrial membrane potential and caused G2 cell cycle arrest. Itraconazole significantly had a synergistic anti-tumor effect combined with various chemotherapeutic agents, including doxorubicin, dexamethasone, cisplatin and different generations of proteasome inhibitors (bortezomib, carfilzomib or ixazomib) in both RSCL and RRCL. Western blot and immunoprecipitation studies demonstrated that following exposure to itraconazole, HKII bound less to mitochondrial specific protein VDAC. Complete silencing of HKII (using HKII siRNA interference) resulted in a rescue of loss in the mitochondrial membrane potential induced by intraconazole. Conclusion: Taking together, our data suggest that itraconazole had a potent anti-tumor activity against rituximab-sensitive or resistant pre-clinical models. The disruption of HKII from mitochondria following itraconazole exposure may contribute to lower the mitochondrial membrane potential and enhance the chemotherapeutic efficacy. Our finding highlights itraconazole as a potential therapeutic agent in the treatment of B-cell malignancies, and strongly supports clinical translation of its use. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yeon-Mi Hong ◽  
Yohan Hong ◽  
Yeong-Gon Choi ◽  
Sujung Yeo ◽  
Soo Hee Jin ◽  
...  

In a previous study, we found that the short isoform of DNAJB6 (DNAJB6(S)) had been decreased in the striatum of a mouse model of Parkinson’s disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). DNAJB6, one of the heat shock proteins, has been implicated in the pathogenesis of PD. In this study, we explored the cytoprotective effect of DNAJB6(S) against 1-methyl-4-phenylpyridinium ion- (MPP+-) induced apoptosis and the underlying molecular mechanisms in cultured LN18 cells from astrocytic tumors. We observed that MPP+ significantly reduced the cell viability and induced apoptosis in LN18 glioblastoma cells. DNAJB6(S) protected LN18 cells against MPP+-induced apoptosis not only by suppressing Bax cleavage but also by inhibiting a series of apoptotic events including loss of mitochondrial membrane potential, increase in intracellular reactive oxygen species, and activation of caspase-9. These observations suggest that the cytoprotective effects of DNAJB6(S) may be mediated, at least in part, by the mitochondrial pathway of apoptosis.


2020 ◽  
Vol 20 (5) ◽  
pp. 599-611
Author(s):  
Thoukhir B. Shaik ◽  
M. Shaheer Malik ◽  
Sunitha R. Routhu ◽  
Zaki S. Seddigi ◽  
Ismail I. Althagafi ◽  
...  

Background: Cancer is one of the major health and social-economic problems despite considerable progress in its early diagnosis and treatment. Owing to the emergence and increase of multidrug resistance to various conventional drugs, and the continuing importance of health-care expenditure, many researchers have focused on developing novel and effective anticancer compounds. Objective: Chemical repositories provide a good platform to evaluate and exploit known chemical entities for the identification of other biological activities. In the present study, we have selected an in-house library of synthesized compounds based on two different pharmacophoric scaffolds to evaluate their cytotoxic potency on various cancer cell lines and mechanisms of action. Methods: A series of in-house synthesized quinazoline and quinazolino-benzothiadiazine derivatives were investigated for their anticancer efficacy against a panel of five cancer (DU145, MCF7, HepG2, SKOV3 and MDA-MB-231) and one normal (MRC5) cell lines. Furthermore, the active compound of the study was investigated to elucidate the mechanism of cytotoxicity by performing series of experiments such as cell cycle analysis, inhibition of tubulin polymerization, alteration of mitochondrial membrane potential, determination of endocytic pathway for drug uptake pathway and combination drug treatment. Results: Among all the tested compounds, fifteen of them exhibited promising growth-inhibitory effect (0.15- 5.0μM) and induced cell cycle arrest in the G2/M phase. In addition, the selected compounds inhibited the microtubule assembly; altered mitochondrial membrane potential and enhanced the levels of caspase-9 in MCF-7 cells. Furthermore, the active compound with a combination of drugs showed a synergistic effect at lower concentrations, and the drug uptake was mediated through clathrin-mediated endocytic pathway. Conclusion: Our results indicated that quinazoline and quinazolino-benzothiadiazine conjugates could serve as potential leads in the development of new anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document