scholarly journals Prevalence of Resistance to Quinolone and Fluoroquinolone Antibiotics and Screening of qnr Genes Among Escherichia coli Isolates From Urinary Tract Infection

2017 ◽  
Vol 5 (4) ◽  
pp. 100-105 ◽  
Author(s):  
Mohadese Amiri ◽  
Maziar Jajarmi ◽  
Reza Ghanbarpour

Background: Antibiotic resistance (AR) is an important challenge in prevention, treatment and control of infectious diseases and is a public health threat for human. Escherichia coli strains are the major causes of urinary tract infections (UTIs). Objective: This research aimed to determine prevalence of resistance to quinolone and fluoroquinolone antibiotics and screen qnr genes among E. coli isolates from UTIs. Materials and Methods: A total of 105 E. coli isolates were obtained from UTI cases in Bojnord city (northeast of Iran) and confirmed by biochemical tests. All strains were studied to determine their resistance to 3 antibiotics including ciprofloxacin, nalidixic acid, and levofloxacin via disk diffusion method. Moreover, the frequency of qnrA, qnrB and qnrS genes and phylogroups was studied by conventional Polymerase chain reaction (PCR). Results: In this study, prevalence of phenotypic AR to ciprofloxacin, nalidixic acid and levofloxacin was 47.6%, 44.8% and 38.1%, respectively. Three isolates were positive for qnrS and 1 isolate was positive for qnrA. Seven phylogenetic groups were also identified as follows: 18% A0, 6.7% A1, 7.6% B1, 1.9% B22, 23.8% B23, 15.3% D1 and 26.7% D2. Conclusion: Prevalence of qnr genes was very low; thus, other types of qnr and plasmid-mediated quinolone resistance genes were probably responsible for the resistance. Phenotypic AR to the 3 antibiotics was found in approximately half of E. coli strains. It is strongly recommended that antibiogram tests should be done before prescribing the ciprofloxacin, nalidixic acid and levofloxacin for UTIs.

Author(s):  
Somayeh Bakhtiari ◽  
Hassan Mahmoudi ◽  
Sara Khosravi Seftjani ◽  
Mohammad Ali Amirzargar ◽  
Sima Ghiasvand ◽  
...  

Background and Objectives: Escherichia coli is the most common causative agent of urinary tract infections (UTIs) in 90-80% of patients in all age groups. Phylogenetic groups of these bacteria are variable and the most known groups are A, B1, B2 and D. The present study aimed to evaluate the phylogenetic groups of E. coli samples obtained from UTIs and their relation with antibiotic resistance patterns of isolates. Materials and Methods: In this study 113 E. coli isolates were isolated from distinct patients with UTIs referred to Hamadan hospitals. After biochemical and molecular identification of the isolates, typing and phylogenetic grouping of E. coli strains were performed using multiplex PCR targeting chu, yjaA and TSPE4.C2 genes. The anti-microbial susceptibility of the isolates to amikacin, ampicillin, trimethoprim-sulfamethoxazole, amoxicillin/clavulanic acid, ciprofloxacin, cefotaxime, imipenem, aztreonam, gentamicin, meropenem, nitrofurantoin, nalidixic acid and cefazolin was determined using disk diffusion method. Results: Of 113 isolates, 50 (44.2%), 35 (31%), 23 (20.4%) and 5 (4.4%) of samples belonged to group B2, group D, group A and group B1 phylogenetic groups respectively. All isolates were susceptible to meropenem, imipenem (100%), followed by amikacin (99.1%). The highest resistance rates were observed against ampicillin (74.3%) and nalidixic acid (70.8%). Correlation between phylogenetic groups and antibiotic susceptibilities was significant only with co-amoxiclav (P = 0.006), which had the highest resistance in phylogenetic group A. Conclusion: Prevalence of different phylogroup and resistance associated with them in E. coli samples could be variable in each region. Therefore, investigating of these items in E. coli infections, could be more helpful in selecting the appropriate antibiotic treatment and epidemiological studies.


2014 ◽  
Vol 8 (07) ◽  
pp. 818-822 ◽  
Author(s):  
Farzaneh Firoozeh ◽  
Mohammad Zibaei ◽  
Younes Soleimani-Asl

Introduction: Plasmid-mediated quinolone resistance, which complicates treatment, has been increasingly identified in Escherichia coli isolates worldwide. The purpose of this study was to identify the plasmid-mediated qnrA and qnrB genes among the quinolone-resistant Escherichia coli isolated from urinary tract infections in Iran. Methodology: A total of 140 Escherichia coli isolates were collected between March and October 2012 from urinary tract infections in Khorram Abad, Iran. All isolates were tested for quinoloe resistance using the disk diffusion method. Also, all quinolone-resistant isolates were screened for the presence of the qnrA and qnrB genes by polymerase chain reaction. Minimum inhibitory concentrations (MICs) of ciprofloxacin for the qnr-positive isolates were determined. Results: One hundred sixteen (82.8%) of 140 Escherichia coli isolates were nalidixic acid-resistant; among them, 14 (12.1%) and 9 (7.8%) were qnrA and qnrB-positive, respectively. Two quinolone-resistant isolates harbored both qnrA and qnrB. Among 63 ciprofloxacin-resistant isolates, 14 (22.2%) and 9 (14.3%) were found to carry qnrA and qnrB genes, respectively. The ciprofloxacin MIC range was 0.25–512 μg/mL for 23 qnr-positive Escherichia coli isolates, 18 of which had MICs values of 4–512 μg/mL. Conclusion: Our study shows that the frequency of plasmid-mediated quinolone resistance genes among E. coli isolates in Iran is high.


2011 ◽  
Vol 5 (12) ◽  
pp. 840-849 ◽  
Author(s):  
José Molina-López ◽  
Gerardo Aparicio-Ozores ◽  
Rosa María Ribas-Aparicio ◽  
Sandra Gavilanes-Parra ◽  
María Elena Chávez-Berrocal ◽  
...  

Introduction: The increasing prevalence of uropathogenic Escherichia coli (UPEC) strains resistant to multiple antibiotics complicates the treatment of urinary tract infections (UTIs). This study aimed to analyze the antimicrobial resistance, serotypes, and phylogenetic groups among strains of E. coli isolated from outpatients with UTIs in Mexico City. Methodology: A total of 119 E. coli isolates were recovered from urine samples from outpatients with clinical diagnosis of uncomplicated UTIs from 2004 to 2007. The serotype was assessed by agglutination in microtiter plates; susceptibility to antimicrobials was determined by the disk diffusion method. Clone O25-ST131 and phylogenetic groups of E. coli strains were tested by methods based on PCR multiplex. Results: The predominant serotype was O25:H4 (21.2%). Resistance to antibiotics was ampicillin (83.7%); piperacillin (53.8%); the fluoroquinolone group (55.5-60.6%), and trimethoprim/sulfamethoxazole (TMP/SMX) (56.4%). Additionally, 36 (30.2%) isolates were multidrug-resistant and 13 of these 36 strains were identified as E. coli O25-ST131 clone by an allele-specific PCR-based assay. Phylogenetic analysis showed that 15 of 17 isolates with serotype O25:H4 belonged to group B2. Conclusions: This is the first report that establishes the presence in Mexico of the O25-ST131 clonal group of E. coli, which has been associated with multidrug-resistance and with high virulence potential. The spread of this clone in Mexico should be monitored closely. We found a correlation between serotype O25:H4 and multidrug resistance in UPEC strains. Our results indicate that the use of ampicillin, fluoroquinolones, and TMP/SMX should be reviewed when selecting empirical therapy for UTIs.


2021 ◽  
Author(s):  
Mohammed Allami ◽  
Masoumeh Bahreini ◽  
Mohammad Reza Sharifmoghadam

Abstract Of the most common infectious diseases that occur mainly by uropathogenic Escherichia coli (UPEC) is urinary tract infections (UTIs). The purpose of this study was to investigate virulence factors, antibiotic resistance, and phylogenetic groups among UPEC strains isolated from patients with UTI in southern Iraq. A total of 100 UPEC isolates were collected from urine samples of UTI patients from various hospitals in southern Iraq, and confirmed by morphological and biochemical tests. Antimicrobial susceptibility testing on isolates was performed by disk diffusion method. Multiplex PCR technique was used to evaluate the phylogenetic groups and the presence of six virulence factor genes; type 1 fimbria (fimH), A-fimbrial adhesion (afa), hemolysin (hly), fimbrial adhesins P (papC), cytotoxic necrosis factor 1 (cnf1), and aerobactin (aer). The majority of isolates belonged to the phylogenetic groups of B2 (55%) and D (32%). The most prevalent virulence factors were fimH (96%), followed by aer (47%), papC (36%), cnf1 (17%), hly (15%), and afa (8%). Phenotypic testing showed that the isolates were most resistant to piperacillin, ticarcillin, amoxicillin/clavulanic acid (92%, 91%, and 88%, respectively) and most sensitive to amikacin and imipenem, respectively. The maximum antibiotic resistance and virulence factors were observed in the phylogenetic group B2. The results showed that the UPEC isolates had all six virulence factors with high frequency and the highest drug resistance. Besides, the results showed a direct relationship between virulence factors, gene diversity, phylogenetic background, and antimicrobial resistance in the UPEC isolates.


2020 ◽  
Vol 13 (10) ◽  
pp. 2156-2165
Author(s):  
Shah Jungy Ibna Karim ◽  
Mahfuzul Islam ◽  
Tahmina Sikder ◽  
Rubaya Rubaya ◽  
Joyanta Halder ◽  
...  

Background and Aim: Pigeon rearing has been gaining popularity for recent years. They are reared remarkably very close to the house of the owner. This activity, therefore, may pose potential threats for humans as well as other animals as pigeons may carry and spread different pathogens including drug-resistant bacteria. This study was conducted to explore the prevalence of Escherichia coli and Salmonella spp. as well as their antibiogram profile along with an association analysis. Materials and Methods: Forty swab samples were collected from 20 pigeons during the study. E. coli and Salmonella spp. were isolated and identified on various types of agars, including MacConkey, Eosin methylene blue, Brilliant green, and Salmonella-Shigella agar. Biochemical tests such as the carbohydrate fermentation test, the triple sugar iron agar slant reaction, the indole test, the methyl red test, the catalase test, as well as the Voges–Proskauer test were also performed. Besides, the presence of E. coli was further confirmed by polymerase chain reaction (PCR). Moreover, antimicrobial susceptibility testing of the isolates was performed against nine antibiotics from seven classes on the Mueller-Hinton agar based on the Kirby–Bauer disk diffusion method. Results: The overall prevalence of E. coli and Salmonella spp. was 52.5 and 27.5%, respectively. The prevalence of the pathogenic E. coli was 61.90%. The antibiogram profile of 21 E. coli as well as 11 Salmonella spp. revealed that all isolates, except one, were resistant to one to six antibiotics. Around 61.90%, 71.43%, 23.81%, 61.90%, 23.81%, 19.05%, and 52.38% of E. coli showed resistance against amoxicillin, ampicillin, azithromycin, erythromycin, nalidixic acid, gentamicin, and tetracycline, respectively. Furthermore, E. coli resistance was not observed in case of ciprofloxacin and levofloxacin. Similarly, around 36.36%, 27.27%, 27.27%, 45.45%, 81.82%, 100%, and 18.18% of the Salmonella spp. showed resistance against amoxicillin, ampicillin, azithromycin, erythromycin, nalidixic acid, tetracycline, and levofloxacin, respectively. However, all Salmonella spp. (100%) were found to show sensitivity against ciprofloxacin and gentamicin. Multidrug-resistant (MDR) E. coli (23.80%) and Salmonella spp. (54.54%) were also isolated. Furthermore, both positive (odds ratio [OR] >1) and negative (OR <1) drug resistance associations, with a higher frequency of positive associations, were found in E. coli. A significant positive association was observed between ampicillin and amoxicillin (OR: 81.67, 95% confidence interval: 2.73-2447.57, p=0.01). Conclusion: Pigeon carrying MDR E. coli and Salmonella spp. may contribute to the transmission and spread of these microorganisms. Therefore, strict hygienic measures should be taken during the farming of pigeons to decrease the potential transmission of E. coli and Salmonella spp. from pigeon to humans as well as other animals. So far, this is the first report of the PCR-based identification of pathogenic E. coli from pigeons in Bangladesh.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1156
Author(s):  
Wei-Hung Lin ◽  
Yen-Zhen Zhang ◽  
Po-Yao Liu ◽  
Po-Shun Chen ◽  
Shining Wang ◽  
...  

Escherichia coli causing urinary tract infections (UTIs) are one of the most common outpatient bacterial infections. This study aimed to compare the characteristics of E. coli isolated from UTI patients in a single medical center in 2009–2010 (n = 504) and 2020 (n = 340). The antimicrobial susceptibility of E. coli was determined by the disk diffusion method. PCRs were conducted to detect phylogenetic groups, ST131, K1 capsule antigen, and 15 virulence factors. Phylogenetic group B2 dominated in our 2009–2010 and 2020 isolates. Moreover, no phylogenetic group E strains were isolated in 2020. E. coli isolates in 2020 were more susceptible to amoxicillin, ampicillin/sulbactam, cefuroxime, cefmetazole, ceftazidime, cefoxitin, tetracycline, and sulfamethoxazole/trimethoprim, compared to the isolates in 2009–2010. Extensively drug-resistant (XDR)-E. coli in 2009–2010 were detected in groups B1 (5 isolates), B2 (12 isolates), F (8 isolates), and unknown (1 isolate). In 2020, XDR-E. coli were only detected in groups A (2 isolates), B2 (5 isolates), D (1 isolate), and F (4 isolates). The prevalence of virulence factor genes aer and fimH were higher in E. coli in 2009–2010 compared to those in 2020. In contrast, afa and sat showed higher frequencies in E. coli isolates in 2020 compared to E. coli in 2009–2010.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Ziad Daoud ◽  
Claude Afif

The purpose of this study was to investigate the bacterial etiology of urinary tract infections in one of the busiest hospitals of Lebanon and to examine the epidemiologic and microbiologic properties of Escherichia coli isolated from urinary tract infections of Lebanese patients over a 10-year period. Methods. This retrospective study analyzed the data generated between 2000 and 2009 (10,013 Gram-positive and Gram-negative bacteria). Bacterial identification was based on standard culture and biochemical characteristics of isolates. Antimicrobial susceptibility was tested by the disk diffusion method, and ESBL production was detected by synergy with third-generation cephalosporins and amoxiclav. Results. E. coli was the most frequent isolate throughout the ten years (60.64% of the total isolates). It was followed by Klebsiella pneumoniae and Proteus sp., Pseudomonas aeruginosa, Enterococcus sp., and Streptococcus agalactiae. E. coli occurred more frequently in women (69.8%) than in men (61.4%). The lowest percentage of susceptibility of E. coli was manifested against piperacillin and ampicillin. An increase in the production of ESBL was observed (2.3% in 2000 to 16.8% in 2009). Conclusions. The etiology of urinary tract infections and their susceptibility profiles are important to be evaluated in countries like Lebanon where a severe misuse of antibiotics at all levels is observed.


2018 ◽  
Vol 12 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Yacoub R. Nairoukh ◽  
Azmi M. Mahafzah ◽  
Amal Irshaid ◽  
Asem A. Shehabi

Background: Emergence of multi-drug resistant uropathogenic E. coli strains is an increasing problem to empirical treatment of urinary tract infections in many countries. This study investigated the magnitude of this problem in Jordan. Methods: A total of 262 E. coli isolates were recovered from urine samples of Jordanian patients which were suspected to have urinary tract infections (UTIs). All isolates were primarily identified by routine biochemical tests and tested for antimicrobial susceptibility by disc diffusion method. Fifty representative Multidrug Resistance (MDR) E. coli isolates to 3 or more antibiotic classes were tested for the presence of resistance genes of blaCTX-M- 1, 9 and 15, carbapenemase (blaIMP, blaVIM, blaNDM-1, blaOXA-48), fluoroquinolones mutated genes (parC and gyrA) and clone of ST131 type using PCR methods. Results: A total of 150/262 (57.3%) of E. coli isolates were MDR. Urine samples of hospitalized patients showed significantly more MDR isolates than outpatients. Fifty representative MDR E. coli isolates indicated the following molecular characteristics: All were positive for mutated parC gene and gyrA and for ST131 clone, and 78% were positive for genes of CTX-M-15, 76% for CTX-M-I and for 8% CTX-M-9, respectively. Additionally, all 50 MDR E. coli isolates were negative for carbapenemase genes (blaIMP, blaVIM, blaNDM-1, blaOXA-48), except of one isolate was positive for blaKPC-2 . Conclusion: This study indicates alarming high rates recovery of MDR uropathogenic E. coli from Jordanian patients associated with high rates of positive ST131 clone, fluoroquinolone resistant and important types of blaCTX-M.


2007 ◽  
Vol 1 (03) ◽  
pp. 257-262 ◽  
Author(s):  
Samuel Kariuki ◽  
Gunturu Revathi ◽  
John Corkill ◽  
John Kiiru ◽  
Joyce Mwituria ◽  
...  

Background: Uropathogenic Escherichia coli are increasingly becoming resistant to flouroquinolones and to other commonly available antimicrobials. We sought to investigate the genetic basis for fluoroquinolone and extended spectrum beta-lactam (ESBL) resistance in 17 fluoroquinolone-resistant (MIC of levofloxacin and ciprofloxacin >32 μg/ml) E. coli isolated from patients with urinary tract infections (UTIs). Methods: We applied PCR and Pulsed Field Gel Electrophoresis (PFGE) to characterize resistance genes and to determine clonal relatedness of strains, respectively. Results: Twelve of the 17 E. coli were resistant to multiple drugs, including ampicillin, co-amoxyclav, cefotaxime, ceftriaxone, ceftazidime and gentamicin and nalidixic acid and produced plasmid-mediated CTX-M-15 type ESBLs and CMY-2 AmpC type enzymes. The other 5 E. coli that were non-ESBL-producing were multiply resistant to ampicillin, nitrofurantoin, cefoxitin, nalidixic acid. Resistance to fluoroquinolones resulted from a combination of the presence of qnrA, qnrB, ciprofloxacin acetylating enzyme designated aac(6’)-1b-cr, and mutations in the two amino acid substitutions; 83 Serine (TCG) to Leucine (TTG) and 87 Aspartic acid (GAC) to Asparagine (AAC). Conclusion: Antibiogram patterns and PFGE of E. coli showed that these were community acquired UTI caused by pockets of clonally-related and some discreet strain types. Plasmid-mediated CTX-M-15 beta-lactamases and CMY-2 AmpC enzymes and fluoroquinolone resistant E. coli are becoming increasingly prevalent in hospitals in Kenya, posing a major challenge in the management of UTIs.


2019 ◽  
Vol 23 (10) ◽  
pp. 40 ◽  
Author(s):  
Wisal R. Yaseen AL- Hayali1 ◽  
Alaa Younis Mahdy2 ◽  
Muhammad Abdul Zaraq Ibrahim3

This study was designed to detect the presence of genes encoding autotranspoter proteins in E. coli that causes UTI by using PCR techniques. Seventy two urine sample were collected from patients infected with UTI whom attended to Salah-AL-deen general hospital in Tikrit city, during three months period (September to November 2016). All samples were cultivated on Blood agar and MacConkey agar. The 47(65.2%) E. coli isolates were confirmed using standard biochemical tests for E. coli. The results indicate the frequencies of Sat gene was 27 strains(57.5%) while Vat gene was 12 strains (25.5%) while the Duplex PCR detected 8(17%) strains of E. coli contained two genes. With this method, we confirmed that autotransporter genes are pathospecifically distributed among the E. coli strains studied.   http://dx.doi.org/10.25130/tjps.23.2018.167


Sign in / Sign up

Export Citation Format

Share Document