scholarly journals Behavioral and neuronal representation of numerosity zero in the crow

2021 ◽  
pp. JN-RM-0090-21 ◽  
Author(s):  
Maximilian E. Kirschhock ◽  
Helen M. Ditz ◽  
Andreas Nieder
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ryohei Satoh ◽  
Hiroko Eda-Fujiwara ◽  
Aiko Watanabe ◽  
Yasuharu Okamoto ◽  
Takenori Miyamoto ◽  
...  

AbstractMale budgerigars (Melopsittacus undulatus) are open-ended learners that can learn to produce new vocalisations as adults. We investigated neuronal activation in male budgerigars using the expression of the protein products of the immediate early genes zenk and c-fos in response to exposure to conspecific contact calls (CCs: that of the mate or an unfamiliar female) in three subregions (CMM, dNCM and vNCM) of the caudomedial pallium, a higher order auditory region. Significant positive correlations of Zenk expression were found between these subregions after exposure to mate CCs. In contrast, exposure to CCs of unfamiliar females produced no such correlations. These results suggest the presence of a CC-specific association among the subregions involved in auditory memory. The caudomedial pallium of the male budgerigar may have functional subdivisions that cooperate in the neuronal representation of auditory memory.


2018 ◽  
Vol 129 (8) ◽  
pp. e89-e90
Author(s):  
M. Kohler ◽  
S. Strauß ◽  
U. Horn ◽  
T. Usichenko ◽  
I. Langner ◽  
...  

Brain ◽  
2015 ◽  
Vol 138 (11) ◽  
pp. 3459-3462 ◽  
Author(s):  
Edmund T. Rolls

2006 ◽  
Vol 23 (3-4) ◽  
pp. 331-339 ◽  
Author(s):  
DAVID L. PHILIPONA ◽  
J. KEVIN O'REGAN

Psychophysical studies suggest that different colors have different perceptual status: red and blue for example are thought of as elementary sensations whereas yellowish green is not. The dominant account for such perceptual asymmetries attributes them to specificities of the neuronal representation of colors. Alternative accounts involve cultural or linguistic arguments. What these accounts have in common is the idea that there are no asymmetries in the physics of light and surfaces that could underlie the perceptual structure of colors, and this is why neuronal or cultural processes must be invoked as the essential underlying mechanisms that structure color perception. Here, we suggest a biological approach for surface reflection properties that takes into account only the information about light that is accessible to an organism given the photopigments it possesses, and we show that now asymmetries appear in the behavior of surfaces with respect to light. These asymmetries provide a classification of surface properties that turns out to be identical to the one observed in linguistic color categorization across numerous cultures, as pinned down by cross cultural studies. Further, we show that data from psychophysical studies about unique hues and hue cancellation are consistent with the viewpoint that stimuli reported by observers as special are those associated with this singularity-based categorization of surfaces under a standard illuminant. The approach predicts that unique blue and unique yellow should be aligned in chromatic space while unique red and unique green should not, a fact usually conjectured to result from nonlinearities in chromatic pathways.


2018 ◽  
Vol 119 (5) ◽  
pp. 1981-1992 ◽  
Author(s):  
Laura Mikula ◽  
Valérie Gaveau ◽  
Laure Pisella ◽  
Aarlenne Z. Khan ◽  
Gunnar Blohm

When reaching to an object, information about the target location as well as the initial hand position is required to program the motor plan for the arm. The initial hand position can be determined by proprioceptive information as well as visual information, if available. Bayes-optimal integration posits that we utilize all information available, with greater weighting on the sense that is more reliable, thus generally weighting visual information more than the usually less reliable proprioceptive information. The criterion by which information is weighted has not been explicitly investigated; it has been assumed that the weights are based on task- and effector-dependent sensory reliability requiring an explicit neuronal representation of variability. However, the weights could also be determined implicitly through learned modality-specific integration weights and not on effector-dependent reliability. While the former hypothesis predicts different proprioceptive weights for left and right hands, e.g., due to different reliabilities of dominant vs. nondominant hand proprioception, we would expect the same integration weights if the latter hypothesis was true. We found that the proprioceptive weights for the left and right hands were extremely consistent regardless of differences in sensory variability for the two hands as measured in two separate complementary tasks. Thus we propose that proprioceptive weights during reaching are learned across both hands, with high interindividual range but independent of each hand’s specific proprioceptive variability. NEW & NOTEWORTHY How visual and proprioceptive information about the hand are integrated to plan a reaching movement is still debated. The goal of this study was to clarify how the weights assigned to vision and proprioception during multisensory integration are determined. We found evidence that the integration weights are modality specific rather than based on the sensory reliabilities of the effectors.


2013 ◽  
Vol 109 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Andrew M. Clark

Rewards and punishments (reinforcement) powerfully shape behavior. Accordingly, their neuronal representation is of significant interest, both for understanding normal brain-behavior relationships and the pathophysiology of disorders such as depression and addiction. A recent article by Vickery and colleagues ( Neuron 72: 166–177, 2011) provides evidence that the neural response to rewards and punishments is surprisingly widespread, suggesting the need for examination of the specific roles of areas not commonly included in the canonical reward circuitry in processing reinforcement.


2015 ◽  
Vol 113 (3) ◽  
pp. 890-903 ◽  
Author(s):  
Andreas Traschütz ◽  
Andreas K. Kreiter ◽  
Detlef Wegener

Neurons in the middle temporal area (MT) respond to motion onsets and speed changes with a transient-sustained firing pattern. The latency of the transient response has recently been shown to correlate with reaction time in a speed change detection task, but it is not known how the sign, the amplitude, and the latency of this response depend on the sign and the magnitude of a speed change, and whether these transients can be decoded to explain speed change detection behavior. To investigate this issue, we measured the neuronal representation of a wide range of positive and negative speed changes in area MT of fixating macaques and obtained three major findings. First, speed change transients not only reflect a neuron's absolute speed tuning but are shaped by an additional gain that scales the tuned response according to the magnitude of a relative speed change. Second, by means of a threshold model positive and negative population transients of a moderate number of MT neurons explain detection of both positive and negative speed changes, respectively, at a level comparable to human detection rates under identical visual stimulation. Third, like reaction times in a psychophysical model of velocity detection, speed change response latencies follow a power-law function of the absolute difference of a speed change. Both this neuronal representation and its close correlation with behavioral measures of speed change detection suggest that neuronal transients in area MT facilitate the detection of rapid changes in visual input.


Sign in / Sign up

Export Citation Format

Share Document