scholarly journals Development of motor innervation of the chick following dorsal-ventral limb bud rotations

1983 ◽  
Vol 3 (9) ◽  
pp. 1760-1772 ◽  
Author(s):  
BA Ferguson
Keyword(s):  
Limb Bud ◽  
Development ◽  
1981 ◽  
Vol 65 (1) ◽  
pp. 149-163
Author(s):  
Alan H. Lamb

Bilateral innervation of a single hindlimb bud was induced by amputating the other limb bud and disrupting the barriers between the two sides. Though the routes of the crossed nerves were necessarily abnormal, the motor projections that developed subsequently were normal as determined by horseradish peroxidase tracing. The limb therefore appears to be innervated selectively, each region being invaded and/or synapsed with only by motoneurones at particular locations. The numbers of motoneurones surviving after metamorphosis were almost normal on both sides provided the operation was done before motor invasion of the limb bud begins. From this it is argued that the axons were probably guided actively to their correct destinations. Without such guidance, axons would probably not have been able to find their correct termination sites and motoneurone survival would therefore have been depressed. The normal motoneurone numbers also imply that the single limb was supporting twice its usual quota of motoneurones. The hypothesis that motoneurones compete in the limb for survival is therefore not supported.


Development ◽  
1984 ◽  
Vol 83 (1) ◽  
pp. 213-223
Author(s):  
N. G. Laing

Chick embryo wing buds were rotated close to the lateral edge of the somites at stage 19, prior to limb innervation. Despite the abnormal orientation of the resulting limb, the motor pools to biceps and triceps were largely normal, as judged by electrical stimulation and horseradish peroxidase labelling just prior to hatching. The only abnormalities were a few caudal motoneurons innervating biceps and a few rostral motoneurons innervating triceps. This distribution is similar to that seen normally in young embryos before the completion of motoneuron death and it is suggested that the rotation may be keeping alive motoneurons which otherwise would die. The morphology of the brachial plexus supplying rotated wings was abnormal. It is concluded that axons growing into the limb bud from the spinal cord can compensate for reversal of both the limb axes and selectively innervate appropriate muscles. The result is consistent with others in which proximal reversal of one limb axis alone produced normal innervation.


1998 ◽  
Vol 23 (4) ◽  
pp. 377-377 ◽  
Author(s):  
Brok ◽  
Stroeve ◽  
Copper ◽  
B.W. Ongerboer De Visser ◽  
Schouwenburg

Author(s):  
Yongchun Zhou ◽  
Junye Liu ◽  
Guozhen Guo ◽  
Kangchu Li ◽  
Jie Zhang ◽  
...  
Keyword(s):  
Limb Bud ◽  

Sign in / Sign up

Export Citation Format

Share Document