scholarly journals Diverse Mechanisms Underlie Glycinergic Feedback Transmission onto Rod Bipolar Cells in Rat Retina

2008 ◽  
Vol 28 (31) ◽  
pp. 7919-7928 ◽  
Author(s):  
A. E. Chavez ◽  
J. S. Diamond
2010 ◽  
Vol 30 (6) ◽  
pp. 2330-2339 ◽  
Author(s):  
A. E. Chavez ◽  
W. N. Grimes ◽  
J. S. Diamond

1990 ◽  
Vol 63 (4) ◽  
pp. 860-876 ◽  
Author(s):  
A. Karschin ◽  
H. Wassle

1. Bipolar cells were isolated from adult rat retinas after enzymatic and mechanical treatment. The cells could be unequivocally identified from their morphology because of high retention of their axon and dendritic processes after isolation. 2. Protein kinase C (PKC) immunoreactivity performed on sections of the rat retina labeled rod bipolar cells and a few amacrine cells. Virtually all bipolar cells in the dissociates expressed PKC immunoreactivity and were, therefore, rod bipolar cells. 3. Rod bipolar cells were examined with the tight-seal whole-cell and excised-patch recording techniques. Resting potentials of the isolated cells recorded under current-clamp conditions showed a broad unimodal distribution around -37 mV. 4. Membrane depolarization from a holding potential of -90 mV resulted in an outward current. A fast sodium inward current was not observed. Membrane hyperpolarization from a holding potential of -40 mV activated an inwardly rectifying current. 5. gamma-Aminobutyric acid (GABA) and glycine, the putative retinal neurotransmitters that mediate the bipolar cells' receptive field surround in vivo, activated chloride conductances in almost all isolated bipolar cells. GABA- and glycine-evoked currents were both desensitizing and could be antagonized by the classical blockers bicuculline, picrotoxin, and strychnine, respectively. 6. Pressure application of the drugs from fine microcapillaries to various parts of the isolated cells suggests a high GABA sensitivity at the axonal endings compared with either the somatic or dendritic region. A similar distribution was not found for glycine. On the contrary, glycine-induced single-channel events with main conductances of 52 and 34 pS were recorded from membrane patches excised from the cells' somata. 7. Conductances induced by glutamate and several excitatory amino acid agonists were observed in a number of the cells. Application of the glutamate agonist 2-amino-4-phosphonobutyric acid (APB) induced an inward current at negative holding potentials associated with the opening of ion channels. In only 5 of 93 cells, APB closed ion channels, leading to a decrease in membrane conductance.


1995 ◽  
Vol 12 (3) ◽  
pp. 501-507 ◽  
Author(s):  
Ralf Enz ◽  
Joachim Bormann

AbstractWe studied the expression of glycine receptor (GlyR) subunits and gephyrin in the adult rat retina. Reverse transcribed RNA was amplified by polymerase chain reaction (RT-PCR) with primers designed to recognize GlyR α1, α2, α3, β subunits, and gephyrin. Using RNA isolated from the whole retina, signals for all four GlyR subunits and gephyrin could be observed. In rod bipolar cells, in contrast, we detected a subset of GlyR subunits, α1 and β, and no gephyrin. Patch-clamp recording employing two subtype-specific blockers of the GlyR, picrotoxinin and cyanotriphenylborate (CTB), indicated that the GlyR in rod bipolar cells is a heteromeric protein composed of the α1 and β subunit. Moreover, the absence of detectable amounts of gephyrin mRNA suggests that the anchor protein is not required for the function of GlyRs in rod bipolar cells.


1999 ◽  
Vol 81 (6) ◽  
pp. 2923-2936 ◽  
Author(s):  
Espen Hartveit

Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. Reciprocal synaptic transmission between rod bipolar cells and presumed A17 amacrine cells was studied by whole cell voltage-clamp recording of rod bipolar cells in a rat retinal slice preparation. Depolarization of a rod bipolar cell evoked two identifiable types of Ca2+ current, a T-type current that activated at about −70 mV and a current with L-type pharmacology that activated at about −50 mV. Depolarization to greater than or equal to −50 mV also evoked an increase in the frequency of postsynaptic currents (PSCs). The PSCs reversed at ∼ E Cl (the chloride equilibrium potential), followed changes in E Cl, and were blocked by γ-aminobutyric acidA (GABAA) and GABAC receptor antagonists and thus were identified as GABAergic inhibitory PSCs (IPSCs). Bipolar cells with cut axons displayed the T-type current but lacked an L-type current and depolarization-evoked IPSCs. Thus L-type Ca2+ channels are placed strategically at the axon terminals to mediate transmitter release from rod bipolar cells. The IPSCs were blocked by the non- N-methyl-d-aspartate (non-NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, indicating that non-NMDA receptors mediate the feed-forward bipolar-to-amacrine excitation. The NMDA receptor antagonist 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid had no consistent effect on the depolarization-evoked IPSCs, indicating that activation of NMDA receptors is not essential for the feedforward excitation. Tetrodotoxin (a blocker of voltage-gated Na+channels) reversibly suppressed the reciprocal response in some cells but not in others, indicating that graded potentials are sufficient for transmitter release from A17 amacrine cells, but suggesting that voltage-gated Na+ channels, under some conditions, can contribute to transmitter release.


2018 ◽  
Vol 133 ◽  
pp. 38-50 ◽  
Author(s):  
Gong Zhang ◽  
Xiao-Hua Wu ◽  
Guo-Zhong Xu ◽  
Shi-Jun Weng ◽  
Xiong-Li Yang ◽  
...  

1991 ◽  
Vol 6 (5) ◽  
pp. 429-437 ◽  
Author(s):  
Danru Zhang ◽  
Hermes H. Yeh

AbstractIn the retina of a variety of vertebrate species, a monoclonal antibody against protein kinase C (PKC) has been shown to label preferentially bipolar cells. Although the functional consequences of PKC activation in these cells is yet to be revealed, the present study was motivated in part by the possibility that the antibody might be used as a selective marker for examining the development of bipolar cells in the rat retina. Here, the developmental pattern and the dynamic changes of retinal cells expressing PKC-like immunoreactivity (PKC-LI) were studied and analyzed throughout postnatal life until adulthood. Upon its initial detection by immunohistochemistry on postnatal day (PD)-10, faint PKC-LI was limited to the central region of the retina, labeling cell bodies located at the scleral margin of the inner nuclear layer (INL) adjacent to the outer plexiform layer (OPL). On subsequent days, PKC-LI spread progressively to the peripheral retina and axon terminal bulbs at the vitreal margin of theinner plexiform layer (IPL) began showing the first signs of immunoreactive labeling. Not until PD-15, the time of eye opening, did PKC-LI in these cells increase to the extent such that their thin axons were immunoreactive. Each of these axons traversed the entire thickness of the IPL and divided into two or three short branches before ending as enlarged terminal bulbs. The morphology and the location of PKC-LI cells in both the developing and adult retina observed in our study are consistent with them being rod bipolar cells. By the end of the fourth postnatal week, the rod bipolar cells appeared mature, resembling those found in the adult. Overall, more dynamic changes occurred at the axon terminal bulbs than at the cell bodies during the maturational process of rod bipolar cells. Interestingly, PKIC-LI was expressed precociusly in these cells when rat pups were reared in complete darkness starting from the day of birth.


2002 ◽  
Vol 19 (4) ◽  
pp. 531-540 ◽  
Author(s):  
SALLY I. FIRTH ◽  
CAROLINA VARELA ◽  
PEDRO DE LA VILLA ◽  
DAVID W. MARSHAK

High levels of endogenous cholecystokinin (CCK) are present in the rat retina (Eskay & Beinfeld, 1982), but the cellular localization and physiological actions of CCK in the rat retina are uncertain. The goals of this study were to characterize the cells containing CCK, identify cell types that interact with CCK cells, and investigate the effects of CCK on rod bipolar cells. Rat retinas were labeled with antibody to gastrin-CCK (gCCK) using standard immunofluorescence techniques. Patch-clamp methods were used to record from dissociated rod bipolar cells from rats and mice. Gastrin-CCK immunoreactive (-IR) axons were evenly distributed throughout the retina in stratum 5 of the inner plexiform layer of the rat retina. However, the gCCK-IR somata were only detected in the ganglion cell layer in the peripheral retina. The gCCK-IR cells contained glutamate decarboxylase, and some of them also contained immunoreactive substance P. Labeled axons contacted PKC-IR rod bipolar cells, and recoverin-IR ON-cone bipolar cells. CCK-octapeptide inhibits GABAC but not GABAA mediated currents in dissociated rod bipolar cells.


1991 ◽  
Vol 6 (4) ◽  
pp. 399-401 ◽  
Author(s):  
Masayuki Yamashita ◽  
Heinz Wässle

AbstractGABA-induced whole-cell currents were measured in rod bipolar cells dissociated from the adult rat retina. The patch-clamp electrode contained nystatin, which made the cell membrane electrically permeable without rupture, thus retarding the rate of diffusion of Cl– ions from the patch pipette to the cell interior. The reversal potential of the GABA-induced currents was around –70 mV at an extracellular Cl-–concentration of 149 mM. We conclude that GABA generates hyperpolarizing responses in rod bipolar cells of the rat retina.


Sign in / Sign up

Export Citation Format

Share Document