STARK AND ZEEMAN EFFECT IN THE [18.5]2∆ 3/2 - X2∆3/2 TRANSITION OF THORIUM MONOFLUORIDE

Author(s):  
Duc-Trung Nguyen ◽  
Timothy Steimle
Keyword(s):  
1970 ◽  
Vol 31 (C4) ◽  
pp. C4-71-C4-74 ◽  
Author(s):  
A. R. EDMONDS

2003 ◽  
Vol 770 ◽  
Author(s):  
H. Przybylinska ◽  
N. Q. Vinh ◽  
B.A. Andreev ◽  
Z. F. Krasil'nik ◽  
T. Gregorkiewicz

AbstractA successful observation and analysis of the Zeeman effect on the near 1.54 μm photoluminescence spectrum in Er-doped crystalline MBE-grown silicon are reported. A clearly resolved splitting of 5 major spectral components was observed in magnetic fields up to 5.5 T. Based on the analysis of the data the symmetry of the dominant optically active center was conclusively established as orthorhombic I (C2v), with g‼≈18.4 and g⊥≈0 in the ground state. The fact that g⊥≈0 explains why EPR detection of Er-related optically active centers in silicon may be difficult. Preferential generation of a single type of an optically active Er-related center in MBE growth confirmed in this study is essential for photonic applications of Si:Er.


Author(s):  
Anthony Duncan ◽  
Michel Janssen

This is the first of two volumes on the genesis of quantum mechanics. It covers the key developments in the period 1900–1923 that provided the scaffold on which the arch of modern quantum mechanics was built in the period 1923–1927 (covered in the second volume). After tracing the early contributions by Planck, Einstein, and Bohr to the theories of black‐body radiation, specific heats, and spectroscopy, all showing the need for drastic changes to the physics of their day, the book tackles the efforts by Sommerfeld and others to provide a new theory, now known as the old quantum theory. After some striking initial successes (explaining the fine structure of hydrogen, X‐ray spectra, and the Stark effect), the old quantum theory ran into serious difficulties (failing to provide consistent models for helium and the Zeeman effect) and eventually gave way to matrix and wave mechanics. Constructing Quantum Mechanics is based on the best and latest scholarship in the field, to which the authors have made significant contributions themselves. It breaks new ground, especially in its treatment of the work of Sommerfeld and his associates, but also offers new perspectives on classic papers by Planck, Einstein, and Bohr. Throughout the book, the authors provide detailed reconstructions (at the level of an upper‐level undergraduate physics course) of the cental arguments and derivations of the physicists involved. All in all, Constructing Quantum Mechanics promises to take the place of older books as the standard source on the genesis of quantum mechanics.


1989 ◽  
Vol 62 (19) ◽  
pp. 2336-2336 ◽  
Author(s):  
A. G. Aronov ◽  
S. Hikami ◽  
A. I. Larkin

1989 ◽  
Vol 44 (11) ◽  
pp. 1063-1078 ◽  
Author(s):  
H. Krause ◽  
D. H. Sutter

Abstract The rotational Zeeman effect has been observed in methanimine which was produced from ethylenediamine by flash pyrolysis. The observed vibronic ground state expectation values of the molecular g-values, the magnetic susceptibility anisotropies and the molecular electric quadrupole moments are: gaa = -1.27099(22), gbb= -0.18975(7), gcc= -0.03440(8), 2ξaa-ξbb-ξcc = 12.49(19) · 10-6 ergG-2mol-1, 2ξbb-ξcc-ξaa = 5.22(11) · 10-6 ergG-2 mol-1 Qaa = 0.43(17) · 10-26esu cm2, Qbb= 1.08(10) · 10-26 esu cm2, and Qcc= -1.51 (26) . 10-26 esu cm2. With the TZVP ab initio value for the out-off plane electronic second moment as additional input, reliable values can be given also for the individual components of the magnetic susceptibility tensor and for the bulk susceptibility:ξ = (ξaa + ξbb + ξcc)/3=-13.13(88) · 10-6 erg G -2 mol-1. From low-J a-and b-type zero field transitions the spin-rotation coupling constants and the 14N nuclear quadrupole coupling constants could be redetermined with improved accuracy. These data are compared with our new theoretical results.


Sign in / Sign up

Export Citation Format

Share Document