scholarly journals Evaluation of real time motion tracking accuracy of customised IMU sensor for application in a mobile badminton virtual reality training system

Author(s):  
Zahari Taha ◽  
Mohd Yashim Wong ◽  
Hwa Jen Yap ◽  
Amirul Abdullah ◽  
Wee Kian Yeo

Immersion is one of the most important aspects in ensuring the applicability of Virtual Reality systems to training regimes aiming to improve performance. To ensure that this key aspect is met, the registration of motion between the real world and virtual environment must be made as accurate and as low latency as possible. Thus, an in-house developed Inertial Measurement Unit (IMU) system is developed for use in tracking the movement of the player’s racquet. This IMU tracks 6 DOF motion data and transmits it to the mobile training system for processing. Physically, the custom motion is built into the shape of a racquet grip to give a more natural sensation when swinging the racquet. In addition to that, an adaptive filter framework is also established to cope with different racquet movements automatically, enabling real-time 6 DOF tracking by balancing the jitter and latency. Experiments are performed to compare the efficacy of our approach with other conventional tracking methods such as the using Microsoft Kinect. The results obtained demonstrated noticeable accuracy and lower latency when compared with the aforementioned methods.

Sensors ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 1037 ◽  
Author(s):  
Wei Fang ◽  
Lianyu Zheng ◽  
Huanjun Deng ◽  
Hongbo Zhang

2019 ◽  
Vol 10 (1) ◽  
pp. 160-166 ◽  
Author(s):  
Vu Trieu Minh ◽  
Nikita Katushin ◽  
John Pumwa

AbstractThis project designs a smart glove, which can be used for motion tracking in real time to a 3D virtual robotic arm in a PC. The glove is low cost with the price of less than 100 € and uses only internal measurement unit for students to develop their projects on augmented and virtual reality applications. Movement data from the glove is transferred to the PC via UART DMA. The data is set as the motion reference path for the 3D virtual robotic arm to follow. APID feedback controller controls the 3D virtual robot to track exactly the haptic glove movement with zero error in real time. This glove can be used also for remote control, tele-robotics and tele-operation systems.


2008 ◽  
Vol 4 (4) ◽  
pp. 339-347 ◽  
Author(s):  
Xiaojun Chen ◽  
Yanping Lin ◽  
Yiqun Wu ◽  
Chengtao Wang

Author(s):  
Tommaso Piazza ◽  
Johan Lundstro¨m ◽  
Alexander Hugestrand ◽  
Andreas Kunz ◽  
Morten Fjeld

A common problem in optical motion capture is the so-called missing marker problem. The occlusion of markers can lead to significant loss of tracking accuracy unless continuous data flow is guaranteed by computationally demanding interpolation or extrapolation schemes. Since interpolation algorithms require data sampled before and after an occlusion, they cannot be used for real-time applications. Extrapolation algorithms only require data sampled before an occlusion. Other algorithms require statistical data and are designed for post-processing. In order to bridge sampling gaps caused by occluded markers and hence to improve 3D real-time motion capture, we suggest a real-time extrapolation algorithm. The realization of this prediction algorithm does not need statistical data or rely on an underlying cinematic human model with pre-defined marker distances. Under the assumption that natural motion can be linear, circular, or a linear combination of both, a prediction method is suggested and realized. The paper presents linear and circular movement measurements for use when a marker is briefly lost. The suggested extrapolation method seems to behave well for a reasonable number of frames, not exceeding 200 milliseconds.


Sign in / Sign up

Export Citation Format

Share Document