Spatial Locality and Its Representation in Films - Focused on ‘Diner’ as the Spatial Stereotype in Recent American Films

2014 ◽  
pp. 191
Author(s):  
Min-Ho Song
1965 ◽  
Vol 18 (4) ◽  
pp. 14-30
Author(s):  
Albert Johnson
Keyword(s):  

2021 ◽  
Vol 103 (15) ◽  
Author(s):  
Minjae Kim ◽  
Hu Miao ◽  
Sangkook Choi ◽  
Manuel Zingl ◽  
Antoine Georges ◽  
...  

2021 ◽  
Author(s):  
Bashar Romanous ◽  
Skyler Windh ◽  
Ildar Absalyamov ◽  
Prerna Budhkar ◽  
Robert Halstead ◽  
...  

AbstractThe join and group-by aggregation are two memory intensive operators that are affecting the performance of relational databases. Hashing is a common approach used to implement both operators. Recent paradigm shifts in multi-core processor architectures have reinvigorated research into how the join and group-by aggregation operators can leverage these advances. However, the poor spatial locality of the hashing approach has hindered performance on multi-core processor architectures which rely on using large cache hierarchies for latency mitigation. Multithreaded architectures can better cope with poor spatial locality by masking memory latency with many outstanding requests. Nevertheless, the number of parallel threads, even in the most advanced multithreaded processors, such as UltraSPARC, is not enough to fully cover the main memory access latency. In this paper, we explore the hardware re-configurability of FPGAs to enable deeper execution pipelines that maintain hundreds (instead of tens) of outstanding memory requests across four FPGAs-drastically increasing concurrency and throughput. We present two end-to-end in-memory accelerators for the join and group-by aggregation operators using FPGAs. Both accelerators use massive multithreading to mask long memory delays of traversing linked-list data structures, while concurrently managing hundreds of thread states across four FPGAs locally. We explore how content addressable memories can be intermixed within our multithreaded designs to act as a synchronizing cache, which enforces locks and merges jobs together before they are written to memory. Throughput results for our hash-join operator accelerator show a speedup between 2$$\times $$ × and 3.4$$\times $$ × over the best multi-core approaches with comparable memory bandwidths on uniform and skewed datasets. The accelerator for the hash-based group-by aggregation operator demonstrates that leveraging CAMs achieves average speedup of 3.3$$\times $$ × with a best case of 9.4$$\times $$ × in terms of throughput over CPU implementations across five types of data distributions.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Fatmah Alantali ◽  
Yasmin Halawani ◽  
Baker Mohammad ◽  
Mahmoud Al-Qutayri
Keyword(s):  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Roula Zougheibe ◽  
Jianhong (Cecilia) Xia ◽  
Ashraf Dewan ◽  
Ori Gudes ◽  
Richard Norman

Abstract Background Numerous studies have examined the association between safety and primary school-aged children’s forms of active mobility. However, variations in studies’ measurement methods and the elements addressed have contributed to inconsistencies in research outcomes, which may be forming a barrier to advancing researchers’ knowledge about this field. To assess where current research stands, we have synthesised the methodological measures in studies that examined the effects of neighbourhood safety exposure (perceived and measured) on children’s outdoor active mobility behaviour and used this analysis to propose future research directions. Method A systematic search of the literature in six electronic databases was conducted using pre-defined eligibility criteria and was concluded in July 2020. Two reviewers screened the literature abstracts to determine the studies’ inclusion, and two reviewers independently conducted a methodological quality assessment to rate the included studies. Results Twenty-five peer-reviewed studies met the inclusion criteria. Active mobility behaviour and health characteristics were measured objectively in 12 out of the 25 studies and were reported in another 13 studies. Twenty-one studies overlooked spatiotemporal dimensions in their analyses and outputs. Delineations of children’s neighbourhoods varied within 10 studies’ objective measures, and the 15 studies that opted for subjective measures. Safety perceptions obtained in 22 studies were mostly static and primarily collected via parents, and dissimilarities in actual safety measurement methods were present in 6 studies. The identified schematic constraints in studies’ measurement methods assisted in outlining a three-dimensional relationship between ‘what’ (determinants), ‘where’ (spatial) and ‘when’ (time) within a methodological conceptual framework. Conclusions The absence of standardised measurement methods among relevant studies may have led to the current diversity in findings regarding active mobility, spatial (locality) and temporal (time) characteristics, the neighbourhood, and the representation of safety. Ignorance of the existing gaps and heterogeneity in measures may impact the reliability of evidence and poses a limitation when synthesising findings, which could result in serious biases for policymakers. Given the increasing interest in children’s health studies, we suggested alternatives in the design and method of measures that may guide future evidence-based research for policymakers who aim to improve children’s active mobility and safety.


2021 ◽  
Vol 13 (1) ◽  
pp. 168781402098732
Author(s):  
Ayisha Nayyar ◽  
Ummul Baneen ◽  
Syed Abbas Zilqurnain Naqvi ◽  
Muhammad Ahsan

Localizing small damages often requires sensors be mounted in the proximity of damage to obtain high Signal-to-Noise Ratio in system frequency response to input excitation. The proximity requirement limits the applicability of existing schemes for low-severity damage detection as an estimate of damage location may not be known  a priori. In this work it is shown that spatial locality is not a fundamental impediment; multiple small damages can still be detected with high accuracy provided that the frequency range beyond the first five natural frequencies is utilized in the Frequency response functions (FRF) curvature method. The proposed method presented in this paper applies sensitivity analysis to systematically unearth frequency ranges capable of elevating damage index peak at correct damage locations. It is a baseline-free method that employs a smoothing polynomial to emulate reference curvatures for the undamaged structure. Numerical simulation of steel-beam shows that small multiple damages of severity as low as 5% can be reliably detected by including frequency range covering 5–10th natural frequencies. The efficacy of the scheme is also experimentally validated for the same beam. It is also found that a simple noise filtration scheme such as a Gaussian moving average filter can adequately remove false peaks from the damage index profile.


2022 ◽  
Vol 21 (1) ◽  
pp. 1-22
Author(s):  
Dongsuk Shin ◽  
Hakbeom Jang ◽  
Kiseok Oh ◽  
Jae W. Lee

A long battery life is a first-class design objective for mobile devices, and main memory accounts for a major portion of total energy consumption. Moreover, the energy consumption from memory is expected to increase further with ever-growing demands for bandwidth and capacity. A hybrid memory system with both DRAM and PCM can be an attractive solution to provide additional capacity and reduce standby energy. Although providing much greater density than DRAM, PCM has longer access latency and limited write endurance to make it challenging to architect it for main memory. To address this challenge, this article introduces CAMP, a novel DRAM c ache a rchitecture for m obile platforms with P CM-based main memory. A DRAM cache in this environment is required to filter most of the writes to PCM to increase its lifetime, and deliver highest efficiency even for a relatively small-sized DRAM cache that mobile platforms can afford. To address this CAMP divides DRAM space into two regions: a page cache for exploiting spatial locality in a bandwidth-efficient manner and a dirty block buffer for maximally filtering writes. CAMP improves the performance and energy-delay-product by 29.2% and 45.2%, respectively, over the baseline PCM-oblivious DRAM cache, while increasing PCM lifetime by 2.7×. And CAMP also improves the performance and energy-delay-product by 29.3% and 41.5%, respectively, over the state-of-the-art design with dirty block buffer, while increasing PCM lifetime by 2.5×.


2011 ◽  
Vol 18 (1) ◽  
pp. 11-36
Author(s):  
Wang Xiaofei

AbstractHistorian John Dower titles his book War Without Mercy. Similarly, wartime Hollywood showed no mercy when depicting Japanese. Negative portrayals were often based on actual atrocities, but it was racism to demonize an entire people and culture. The story of how politics in Hollywood and Washington, the conduct of war, and international relations shaped and changed film racism involves a much more complex approach than has been practiced to date. Using archives of film studios, the Production Code Administration (PCA), and governmental agencies such as the Office of War Information (OWI), this article traces the power struggle among them and a new racism which emerged after 1941. Filmmakers now projected favorable images of Chinese to distinguish their new allies from the Japanese enemy. OWI struggled to promote a liberal agenda which saw the enemy as world fascism, not the Japanese people. The article analyzes more than two dozen films to trace the complications in three types of wartime screen racism: (1) "Verbal racism," such as derogating words like "Jap." (2) "Physical racism," which dramatized and ridiculed physical characteristics of Japanese people. (3) "Psychological racism," which saw all Japanese people as cruel and treacherous.


Sign in / Sign up

Export Citation Format

Share Document