scholarly journals Short-term treatment with olanzapine does not modulate gut hormone secretion: olanzapine disintegrating versus standard tablets

2010 ◽  
Vol 162 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Solrun Vidarsdottir ◽  
Ferdinand Roelfsema ◽  
Trea Streefland ◽  
Jens J Holst ◽  
Jens F Rehfeld ◽  
...  

BackgroundTreatment with olanzapine (atypical antipsychotic drug) is frequently associated with various metabolic anomalies, including obesity, dyslipidemia, and diabetes mellitus. Recent data suggest that olanzapine orally disintegrating tablets (ODT), which dissolve instantaneously in the mouth, might cause less weight gain than olanzapine standard oral tablets (OST).Design and methodsTen healthy men received olanzapine ODT (10 mg o.d., 8 days), olanzapine OST (10 mg o.d., 8 days), or no intervention in a randomized crossover design. At breakfast and dinner, blood samples were taken for measurement of pancreatic polypeptide, peptide YY, glucagon-like peptide-1, total glucagon, total ghrelin, and cholecystokinin (CCK) concentrations.ResultsWith the exception of pre- and postprandial concentration of ghrelin at dinner and preprandial CCK concentrations at breakfast, which were all slightly increased (respectivelyP=0.048,P=0.034 andP=0.042), olanzapine did not affect gut hormone concentrations. Thus, olanzapine ODT and OST had similar effects on gut hormone secretion.ConclusionShort-term treatment with olanzapine does not have major impact on the plasma concentration of gut hormones we measured in healthy men. Moreover, despite pharmacological difference, gut hormone concentrations are similar during treatment with olanzapine ODT and OST. The capacity of olanzapine to induce weight gain and diabetes is unlikely to be caused by modulation of the secretion of gut hormones measured here. We cannot exclude the possibility that olanzapine's impact on other gut hormones, to impair insulin sensitivity and stimulate weight gain, exists.

2014 ◽  
Vol 306 (7) ◽  
pp. G622-G630 ◽  
Author(s):  
Rune E. Kuhre ◽  
Fiona M. Gribble ◽  
Bolette Hartmann ◽  
Frank Reimann ◽  
Johanne A. Windeløv ◽  
...  

Nutrients often stimulate gut hormone secretion, but the effects of fructose are incompletely understood. We studied the effects of fructose on a number of gut hormones with particular focus on glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In healthy humans, fructose intake caused a rise in blood glucose and plasma insulin and GLP-1, albeit to a lower degree than isocaloric glucose. Cholecystokinin secretion was stimulated similarly by both carbohydrates, but neither peptide YY3–36nor glucagon secretion was affected by either treatment. Remarkably, while glucose potently stimulated GIP release, fructose was without effect. Similar patterns were found in the mouse and rat, with both fructose and glucose stimulating GLP-1 secretion, whereas only glucose caused GIP secretion. In GLUTag cells, a murine cell line used as model for L cells, fructose was metabolized and stimulated GLP-1 secretion dose-dependently (EC50= 0.155 mM) by ATP-sensitive potassium channel closure and cell depolarization. Because fructose elicits GLP-1 secretion without simultaneous release of glucagonotropic GIP, the pathways underlying fructose-stimulated GLP-1 release might be useful targets for type 2 diabetes mellitus and obesity drug development.


Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 176-194 ◽  
Author(s):  
Kaare V. Grunddal ◽  
Cecilia F. Ratner ◽  
Berit Svendsen ◽  
Felix Sommer ◽  
Maja S. Engelstoft ◽  
...  

Abstract The 2 gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are well known to be coexpressed, costored, and released together to coact in the control of key metabolic target organs. However, recently, it became clear that several other gut hormones can be coexpressed in the intestinal-specific lineage of enteroendocrine cells. Here, we focus on the anatomical and functional consequences of the coexpression of neurotensin with GLP-1 and PYY in the distal small intestine. Fluorescence-activated cell sorting analysis, laser capture, and triple staining demonstrated that GLP-1 cells in the crypts become increasingly multihormonal, ie, coexpressing PYY and neurotensin as they move up the villus. Proglucagon promoter and pertussis toxin receptor-driven cell ablation and reappearance studies indicated that although all the cells die, the GLP-1 cells reappear more quickly than PYY- and neurotensin-positive cells. High-resolution confocal fluorescence microscopy demonstrated that neurotensin is stored in secretory granules distinct from GLP-1 and PYY storing granules. Nevertheless, the 3 peptides were cosecreted from both perfused small intestines and colonic crypt cultures in response to a series of metabolite, neuropeptide, and hormonal stimuli. Importantly, neurotensin acts synergistically, ie, more than additively together with GLP-1 and PYY to decrease palatable food intake and inhibit gastric emptying, but affects glucose homeostasis in a more complex manner. Thus, neurotensin is a major gut hormone deeply integrated with GLP-1 and PYY, which should be taken into account when exploiting the enteroendocrine regulation of metabolism pharmacologically.


Author(s):  
Emma Rose McGlone ◽  
Khalefah Malallah ◽  
Joyceline Cuenco ◽  
Nicolai J. Wewer Albrechtsen ◽  
Jens J. Holst ◽  
...  

AIMS Bile acids (BA) regulate post-prandial metabolism directly and indirectly by affecting the secretion of gut hormones like glucagon-like peptide-1 (GLP-1). The post-prandial effects of BA on the secretion of other metabolically active hormones are not well understood. The objective of this study was to investigate the effect of oral ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) on post-prandial secretion of GLP-1, oxyntomodulin (OXM), peptide YY (PYY), glucose-dependent insulinotropic peptide (GIP), glucagon and ghrelin. METHODS Twelve healthy volunteers underwent a mixed meal test 60 minutes after ingestion of UDCA (12-16 mg/kg), CDCA (13-16 mg/kg) or no BA in a randomised cross-over study. Glucose, insulin, GLP-1, OXM, PYY, GIP, glucagon, ghrelin and fibroblast growth factor 19 were measured prior to BA administration at -60, 0 (just prior to mixed meal) and 15, 30, 60, 120, 180 and 240 minutes after the meal. RESULTS UDCA and CDCA provoked differential gut hormone responses: UDCA did not have any significant effects, but CDCA provoked significant increases in GLP-1 and OXM and a profound reduction in GIP. CDCA increased fasting GLP-1 and OXM secretion in parallel with an increase in insulin. On the other hand, CDCA reduced post-prandial secretion of GIP, with an associated reduction in post-prandial insulin secretion. CONCLUSIONS Exogenous CDCA can exert multiple salutary effects on the secretion of gut hormones; if these effects are confirmedin obesity and type 2 diabetes, CDCA may be a potential therapy for these conditions.


Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 157 ◽  
Author(s):  
Marta Klementova ◽  
Lenka Thieme ◽  
Martin Haluzik ◽  
Renata Pavlovicova ◽  
Martin Hill ◽  
...  

Gastrointestinal hormones are involved in regulation of glucose metabolism and satiety. We tested the acute effect of meal composition on these hormones in three population groups. A randomized crossover design was used to examine the effects of two energy- and macronutrient-matched meals: a processed-meat and cheese (M-meal) and a vegan meal with tofu (V-meal) on gastrointestinal hormones, and satiety in men with type 2 diabetes (T2D, n = 20), obese men (O, n = 20), and healthy men (H, n = 20). Plasma concentrations of glucagon-like peptide -1 (GLP-1), amylin, and peptide YY (PYY) were determined at 0, 30, 60, 120 and 180 min. Visual analogue scale was used to assess satiety. We used repeated-measures Analysis of variance (ANOVA) for statistical analysis. Postprandial secretion of GLP-1 increased after the V-meal in T2D (by 30.5%; 95%CI 21.2 to 40.7%; p < 0.001) and H (by 15.8%; 95%CI 8.6 to 23.5%; p = 0.01). Postprandial plasma concentrations of amylin increased in in all groups after the V-meal: by 15.7% in T2D (95%CI 11.8 to 19.6%; p < 0.001); by 11.5% in O (95%CI 7.8 to 15.3%; p = 0.03); and by 13.8% in H (95%CI 8.4 to 19.5%; p < 0.001). An increase in postprandial values of PYY after the V-meal was significant only in H (by 18.9%; 95%CI 7.5 to 31.3%; p = 0.03). Satiety was greater in all participants after the V-meal: by 9% in T2D (95%CI 4.4 to 13.6%; p = 0.004); by 18.7% in O (95%CI 12.8 to 24.6%; p < 0.001); and by 25% in H (95%CI 18.2 to 31.7%; p < 0.001). Our results indicate there is an increase in gut hormones and satiety, following consumption of a single plant-based meal with tofu when compared with an energy- and macronutrient-matched processed-meat meat and cheese meal, in healthy, obese and diabetic men.


2015 ◽  
Vol 113 (4) ◽  
pp. 574-584 ◽  
Author(s):  
H. Frances J. Bligh ◽  
Ian F. Godsland ◽  
Gary Frost ◽  
Karl J. Hunter ◽  
Peter Murray ◽  
...  

There is evidence for health benefits from ‘Palaeolithic’ diets; however, there are a few data on the acute effects of rationally designed Palaeolithic-type meals. In the present study, we used Palaeolithic diet principles to construct meals comprising readily available ingredients: fish and a variety of plants, selected to be rich in fibre and phyto-nutrients. We investigated the acute effects of two Palaeolithic-type meals (PAL 1 and PAL 2) and a reference meal based on WHO guidelines (REF), on blood glucose control, gut hormone responses and appetite regulation. Using a randomised cross-over trial design, healthy subjects were given three meals on separate occasions. PAL2 and REF were matched for energy, protein, fat and carbohydrates; PAL1 contained more protein and energy. Plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP) and peptide YY (PYY) concentrations were measured over a period of 180 min. Satiation was assessed using electronic visual analogue scale (EVAS) scores. GLP-1 and PYY concentrations were significantly increased across 180 min for both PAL1 (P= 0·001 and P< 0·001) and PAL2 (P= 0·011 and P= 0·003) compared with the REF. Concomitant EVAS scores showed increased satiety. By contrast, GIP concentration was significantly suppressed. Positive incremental AUC over 120 min for glucose and insulin did not differ between the meals. Consumption of meals based on Palaeolithic diet principles resulted in significant increases in incretin and anorectic gut hormones and increased perceived satiety. Surprisingly, this was independent of the energy or protein content of the meal and therefore suggests potential benefits for reduced risk of obesity.


2016 ◽  
Vol 310 (1) ◽  
pp. G43-G51 ◽  
Author(s):  
Simon Veedfald ◽  
Astrid Plamboeck ◽  
Carolyn F. Deacon ◽  
Bolette Hartmann ◽  
Filip K. Knop ◽  
...  

Enteropancreatic hormone secretion is thought to include a cephalic phase, but the evidence in humans is ambiguous. We studied vagally induced gut hormone responses with and without muscarinic blockade in 10 glucose-clamped healthy men (age: 24.5 ± 0.6 yr, means ± SE; body mass index: 24.0 ± 0.5 kg/m2; HbA1c: 5.1 ± 0.1%/31.4 ± 0.5 mmol/mol). Cephalic activation was elicited by modified sham feeding (MSF, aka “chew and spit”) with or without atropine (1 mg bolus 45 min before MSF + 80 ng·kg−1·min−1 for 2 h). To mimic incipient prandial glucose excursions, glucose levels were clamped at 6 mmol/l on all days. The meal stimulus for the MSF consisted of an appetizing breakfast. Participants (9/10) also had a 6 mmol/l glucose clamp without MSF. Pancreatic polypeptide (PP) levels rose from 6.3 ± 1.1 to 19.9 ± 6.8 pmol/l (means ± SE) in response to MSF and atropine lowered basal PP levels and abolished the MSF response. Neither insulin, C-peptide, glucose-dependent insulinotropic polypeptide (GIP), nor glucagon-like peptide-1 (GLP-1) levels changed in response to MSF or atropine. Glucagon and ghrelin levels were markedly attenuated by atropine prior to and during the clamp: at t = 105 min on the atropine (ATR) + clamp (CLA) + MSF compared with the saline (SAL) + CLA and SAL + CLA + MSF days; baseline-subtracted glucagon levels were −10.7 ± 1.1 vs. −4.0 ± 1.1 and −4.7 ± 1.9 pmol/l (means ± SE), P < 0.0001, respectively; corresponding baseline-subtracted ghrelin levels were 303 ± 36 vs. 39 ± 38 and 3.7 ± 21 pg/ml (means ± SE), P < 0.0001. Glucagon and ghrelin levels were unaffected by MSF. Despite adequate PP responses, a cephalic phase response was absent for insulin, glucagon, GLP-1, GIP, and ghrelin.


2008 ◽  
Vol 93 (9) ◽  
pp. 3455-3461 ◽  
Author(s):  
Petra Kok ◽  
Ferdinand Roelfsema ◽  
Marijke Frölich ◽  
Johannes van Pelt ◽  
A. Edo Meinders ◽  
...  

2020 ◽  
Vol 246 (3) ◽  
pp. R65-R74 ◽  
Author(s):  
Bernard Khoo ◽  
Tricia Mei-Mei Tan

Obesity represents an important public health challenge for the twenty-first century: globalised, highly prevalent and increasingly common with time, this condition is likely to reverse some of the hard-won gains in mortality accomplished in previous centuries. In the search for safe and effective therapies for obesity and its companion, type 2 diabetes mellitus (T2D), the gut hormone glucagon-like peptide-1 (GLP-1) has emerged as a forerunner and analogues thereof are now widely used in treatment of obesity and T2D, bringing proven benefits in improving glycaemia and weight loss and, notably, cardiovascular outcomes. However, GLP-1 alone is subject to limitations in terms of efficacy, and as a result, investigators are evaluating other gut hormones such as glucose-dependent insulinotropic peptide (GIP), glucagon and peptide YY (PYY) as possible partner hormones that may complement and enhance GLP-1’s therapeutic effects. Such combination gut hormone therapies are in pharmaceutical development at present and are likely to make it to market within the next few years. This review examines the physiological basis for combination gut hormone therapy and presents the latest clinical results that underpin the excitement around these treatments. We also pose, however, some hard questions for the field which need to be answered before the full benefit of such treatments can be realised.


1998 ◽  
Vol 83 (10) ◽  
pp. 3735-3736
Author(s):  
H. Vierhapper ◽  
P. Nowotny ◽  
W. Waldhäusl

The effect of biosynthetic human GH on the production rates of testosterone was determined in healthy men (n = 7) using the stable isotope dilution technique and mass spectrometry. 1α,2α-d-Testosterone (20 μg/h) was infused for 10 h (0800–1800 h). Blood samples obtained at 20-min intervals from 1400–1800 h were pooled during two 2-h periods. Subsequently, each volunteer received a daily dose of biosynthetic human GH (4 IU/day sc) for 7 days. This resulted in a rise in plasma concentrations of somatomedin-C from, basal, 0.67 ± 0.13 U/mL to 1.20± 0.2 U/mL on day 7 (P &lt; 0.0001). Testosterone production rates (basal: 209.9 ± 31.0 μg/h) were unchanged by treatment with GH (day 7: 192.2 ± 30.1 μg/h). In healthy men, short-term treatment with sc GH does not influence endogenous testosterone production rates.


Metabolism ◽  
2002 ◽  
Vol 51 (4) ◽  
pp. 531-536 ◽  
Author(s):  
Bernd Fruehwald-Schultes ◽  
Kerstin M. Oltmanns ◽  
Barbara Toschek ◽  
Stefan Sopke ◽  
Werner Kern ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document