scholarly journals Human heterochromatin protein 1 isoforms regulate androgen receptor signaling in prostate cancer

2013 ◽  
Vol 50 (3) ◽  
pp. 401-409 ◽  
Author(s):  
Momoe Itsumi ◽  
Masaki Shiota ◽  
Akira Yokomizo ◽  
Eiji Kashiwagi ◽  
Ario Takeuchi ◽  
...  

Androgen receptor (AR) signaling is critical for the tumorigenesis and development of prostate cancer, as well as the progression to castration-resistant prostate cancer. We previously showed that the heterochromatin protein 1 (HP1) β isoform plays a critical role in transactivation of AR signaling as an AR coactivator that promotes prostate cancer cell proliferation. However, the roles of other HP1 isoforms, HP1α and HP1γ, in AR expression and prostate cancer remain unclear. Here, we found that knockdown of HP1γ, but not HP1α, reduced AR expression and cell proliferation by inducing cell cycle arrest at G1 phase in LNCaP cells. Conversely, overexpression of full-length HP1α and its C-terminal deletion mutant increased AR expression and cell growth, whereas overexpression of HP1γ had no effect. Similarly, HP1α overexpression promoted 22Rv1 cell growth, whereas HP1γ knockdown reduced the proliferation of CxR cells, a castration-resistant LNCaP derivative. Taken together, HP1 isoforms distinctly augment AR signaling and cell growth in prostate cancer. Therefore, silencing of HP1β and HP1γ may be a promising therapeutic strategy for treatment of prostate cancer.

2010 ◽  
Vol 17 (2) ◽  
pp. 455-467 ◽  
Author(s):  
M Shiota ◽  
Y Song ◽  
A Yokomizo ◽  
Y Tada ◽  
K Kuroiwa ◽  
...  

There are currently few successful therapies for castration-resistant prostate cancer (CRPC). CRPC is thought to result from augmented activation of the androgen/androgen receptor (AR) signaling pathway, which could be enhanced by AR cofactors. In this study, heterochromatin protein 1β (HP1β), but not HP1α or HP1γ was found to be an AR cofactor. HP1β interacted with the AR, and enhanced the DNA-binding ability of AR to androgen-responsive element in the prostate-specific antigen enhancer and promoter regions, and to increase the transcription of AR target genes. In prostate cancer (PCa) tissues, HP1β expressions correlated with Gleason score and tri-methylation levels of histone H3 lysine 9. Silencing of HP1β suppressed the growth of AR-expressing PCa cells by inducing cell-cycle arrest at the G1 phase, similar to inhibition of androgen/AR signaling. Furthermore, HP1β was overexpressed in castration-resistant LNCaP derivative CxR cells, and HP1β knockdown also suppressed the cell growth in CxR cells. These findings indicate that HP1β is involved in the proliferation of AR-expressing PCa cells and progression to CRPC as an AR coactivator. Modulation of HP1β expression or function might be a useful strategy for developing novel therapeutics for PCa, even in CRPC.


2019 ◽  
Vol 20 (9) ◽  
pp. 2066 ◽  
Author(s):  
Namrata Khurana ◽  
Suresh C. Sikka

Androgen receptor (AR) signaling plays a key role not only in the initiation of prostate cancer (PCa) but also in its transition to aggressive and invasive castration-resistant prostate cancer (CRPC). However, the crosstalk of AR with other signaling pathways contributes significantly to the emergence and growth of CRPC. Wnt/β-catenin signaling facilitates ductal morphogenesis in fetal prostate and its anomalous expression has been linked with PCa. β-catenin has also been reported to form complex with AR and thus augment AR signaling in PCa. The transcription factor SOX9 has been shown to be the driving force of aggressive and invasive PCa cells and regulate AR expression in PCa cells. Furthermore, SOX9 has also been shown to propel PCa by the reactivation of Wnt/β-catenin signaling. In this review, we discuss the critical role of SOX9/AR/Wnt/β-catenin signaling axis in the development and progression of CRPC. The phytochemicals like sulforaphane and curcumin that can concurrently target SOX9, AR and Wnt/β-catenin signaling pathways in PCa may thus be beneficial in the chemoprevention of PCa.


2014 ◽  
Vol 462 (2) ◽  
pp. 315-327 ◽  
Author(s):  
I-Ju Yeh ◽  
Kyung Song ◽  
Bryan M. Wittmann ◽  
Xiaodong Bai ◽  
David Danielpour ◽  
...  

Our studies indicate that hexamethylene-bis-acetamide-inducible protein 1 (HEXIM1) is required for inhibition of the androgen receptor by anti-androgens. These studies have important implications in the development of therapeutic agents for castration-resistant prostate cancer.


2019 ◽  
Vol 41 (8) ◽  
pp. 1145-1157 ◽  
Author(s):  
Aya Naiki-Ito ◽  
Taku Naiki ◽  
Hiroyuki Kato ◽  
Keitaro Iida ◽  
Toshiki Etani ◽  
...  

Abstract A need exists for seeking effective treatments for castration-resistant prostate cancer (CRPC) in response to its emergence following androgen deprivation therapy as a major clinical problem. In the present study, we investigated the chemopreventive and chemotherapeutic potential of luteolin, a flavonoid with antioxidative properties, on prostate cancer, including CRPC. Luteolin inhibited the progression of rat prostate carcinogenesis by induction of apoptosis in a transgenic rat for adenocarcinoma of prostate (TRAP) model. Luteolin decreased cell proliferation in a dose-dependent manner and induced apoptosis with the activation of caspases 3 and 7 in both rat (PCai1, established from a TRAP prostate tumor) and human (22Rv1) CRPC cells. Dietary luteolin also suppressed tumor growth via an increase in apoptosis and inhibition of angiogenesis in PCai1 and 22Rv1 xenografts implanted in castrated nude mice. We also focused on androgen receptor splice variant 7 (AR-V7), which contributes to cell proliferation and therapeutic resistance in CRPC. Luteolin dramatically suppressed AR-V7 protein expression in 22Rv1 cells in vitro and ex vivo. Microarray analysis identified MiR-8080, which contains a possible target sequence for AR-V7 3′-UTR, as a gene upregulated by luteolin. MiR-8080 transfection decreased the AR-V7 expression level and the induction of apoptosis in 22Rv1 cells. Furthermore, miR-8080 knockdown canceled luteolin decreasing AR-V7 and the cell growth of 22Rv1. MiR-8080 induced by luteolin intake enhanced the therapeutic effect of enzalutamide on 22Rv1 xenografts under castration conditions. These results indicate luteolin inhibits CRPC by AR-V7 suppression through miR-8080, highlighting luteolin and miR-8080 as promising therapeutic agents for this disease.


2010 ◽  
Vol 24 (1) ◽  
pp. 114-127 ◽  
Author(s):  
Masaki Shiota ◽  
Akira Yokomizo ◽  
Yasuhiro Tada ◽  
Junichi Inokuchi ◽  
Katsunori Tatsugami ◽  
...  

Abstract There are currently few successful therapies for castration-resistant prostate cancer (CRPC). CRPC is thought to result from augmented activation of the androgen/androgen receptor (AR) signaling pathway, which could be enhanced by AR cofactors. In this study, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) was found to be an AR cofactor. PGC-1α interacted with the N-terminal domain of AR, was involved in the N- and C-terminal interaction of AR, and enhanced the DNA-binding ability of AR to androgen-responsive elements in the prostate-specific antigen enhancer and promoter regions to increase the transcription of AR target genes. Silencing of PGC-1α suppressed cell growth of AR-expressing prostate cancer (PCa) cells by inducing cell-cycle arrest at the G1 phase, similar to inhibition of androgen/AR signaling. Furthermore, PGC-1α knock-down also suppressed cell growth in the castration-resistant LNCaP-derivatives. These findings indicate that PGC-1α is involved in the proliferation of AR-expressing PCa cells by acting as an AR coactivator. Modulation of PGC-1α expression or function may offer a useful strategy for developing novel therapeutics for PCa, including CRPC, which depends on AR signaling by overexpressing AR and its coactivators.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Shoubin Li ◽  
Chunhong Yu ◽  
Yunxia Zhang ◽  
Junjiang Liu ◽  
Yi Jia ◽  
...  

cir-ITCH, a well-known tumor-suppressive circular RNA, plays a critical role in different cancers. However, its expression and functional role in prostate cancer (PCa) are unclear. Herein, we explored the potential mechanism and tumor-inhibiting role of cir-ITCH in PCa. Using reverse transcriptase polymerase chain reaction assay, we analyzed the expression of cir-ITCH in PCa and paired adjacent nontumor tissue samples resected during surgical operation, as well as in two cell lines of human PCa (LNCaP and PC-3) and the immortalized normal prostate epithelial cell line (RWPE-1). Cell viability and migration of PCa cell lines were evaluated using CCK-8 and wound-healing assays. Expression of key proteins of the Wnt/β-catenin and PI3K/AKT/mTOR pathways was detected using western blotting. We found that cir-ITCH expression was typically downregulated in the tissues and cell lines of PCa compared to that in the peritumoral tissue and in RWPE-1 cells, respectively. The results showed that cir-ITCH overexpression significantly inhibits the proliferation, migration, and invasion of human PCa cells and that reciprocal inhibition of expression occurred between cir-ITCH and miR-17. Proteins in the Wnt/β-catenin and PI3K/AKT/mTOR pathways were downregulated by overexpression of cir-ITCH both in androgen receptor-positive LNCaP cells and androgen receptor-negative PC-3 cells. Taken together, these data demonstrated that cir-ITCH plays a tumor-suppressive role in human PCa cells, partly through the Wnt/β-catenin and PI3K/AKT/mTOR pathways. Thus, cir-ITCH may serve as a novel therapeutic target for the treatment of PCa, especially castration-resistant prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document