scholarly journals Cats cloned from fetal and adult somatic cells by nuclear transfer

Reproduction ◽  
2005 ◽  
Vol 129 (2) ◽  
pp. 245-249 ◽  
Author(s):  
X J Yin ◽  
H S Lee ◽  
Y H Lee ◽  
Y I Seo ◽  
S J Jeon ◽  
...  

This work was undertaken in order to study the developmental competence of nuclear transfer (NT ) into cat embryos using fetal fibroblast and adult skin fibroblast cells as donor nuclei. Oocytes were recovered by mincing the ovaries in Hepes-buffered TCM199 and selecting the cumulus oocyte complexes (COCs) with compact cumulus cell mass and dark color. Homogenous ooplasm was cultured for maturation in TCM199+10% fetal bovine serum (FBS) for 12 h and used as a source of recipient cytoplast for exogenous somatic nuclei. In experiment 1, we evaluated the effect of donor cell type on the reconstruction and development of cloned embryos. Fusion, first cleavage and blastocyst developmental rate were not different between fetal fibroblasts and adult skin cells (71.2 vs 66.8; 71.0 vs 57.6; 4.0 vs 6.1% respectively; P < 0.05). In experiment 2, cloned embryos were surgically transferred into the oviducts of recipient queens. One of the seven recipient queens was delivered naturally of 2 healthy cloned cats and 1 stillborn from fetal fibroblast cells of male origin 65 days after embryo transfer. One of three recipient queens was delivered naturally of 1 healthy cloned cat from adult skin cells of female origin 65 days after embryo transfer. The cloned cats showed genotypes identical to the donor cell lines, indicating that adult somatic cells can be used for feline cloning.

2007 ◽  
Vol 19 (1) ◽  
pp. 150 ◽  
Author(s):  
K. Miyamoto ◽  
M. Ohnuki ◽  
N. Minami ◽  
M. Yamada ◽  
H. Imai

Revealing an adequate cell state for nuclear reprogramming is essential to achieve efficient production of cloned embryos and animals. Previous reports suggest that nuclei from undifferentiated cells such as blastomeres or embryonic stem cells can support efficient development of cloned embryos to term. In recent years, differentiated somatic cells are frequently used for donor cells because of ease of preparation and application for genetic modification. The efficiency of the somatic cell nuclear transfer (SCNT) is still extremely low. We hypothesized that somatic cells that had been reprogrammed to dedifferentiated states before SCNT might support higher developmental ability of SCNT embryos. To test this hypothesis, porcine fibroblast cells were treated with Xenopus egg extracts, and the extract-treated cells (ETCs) were used as donor cell for SCNT to examine their ability to support early embryonic development. Xenopus egg extracts were prepared from activated S-phase eggs. Porcine fibroblast cells (106/mL) were permeabilized by 500 ng mL-1 of Streptolysin O and were incubated in the egg extracts with the energy-regenerating system for 2 hours at 23�C. After the extract treatment, permeabilized membranes were resealed in DMEM containing 2 mM CaCl2. The ETCs were fused with porcine enucleated oocytes and simultaneously activated. The reconstructed embryos were cultured in PZM-3 medium for 7 days. All statistical differences were analyzed by ANOVA. Reprogramming of ETCs was evaluated on changes of chromatin states and gene expression. Chromatin-binding proteins of ETCs were separated and analyzed on SDS-PAGE. Some proteins were incorporated onto and/or released from chromatins after the extract treatment. Especially, Xenopus egg-specific linker histone B4 was assembled on chromatins. Non-permeabilized control cells did not show these protein exchanges. Deacetylation of histone H3 lysine9 was detected in half number of ETCs in an ATP-dependent manner. In contrast, a high population of histone H3-acetylated cells was observed in buffer-treated cells as well as cells before the extract treatment. The pluripotent marker gene expression, such as OCT4 and SOX2, was also observed in ETCs after culture. The gene expression of these genes was not detected in non-treated cells. These results indicate that the extract treatment induces or triggers a part of dedifferentiation of somatic cells. These ETCs were used as donor cell for SCNT, and reconstructed cloned embryos were cultured. SCNT embryos showed no significant difference in cleavage rates and developmental rates to the blastocyst stage (25%) compared with non-treated control cells (26%). However, the total cell number of embryos at the blastocyst stage was significantly higher in SCNT embryos from ETCs compared with those of control cells (62 � 7 vs. 43 � 2, respectively; P &lt; 0.05). These results indicate that the extract treatment before nuclear transfer may stimulate cell proliferation of SCNT embryos but not improve early development. More studies, however, are needed to investigate their developmental ability to term.


2007 ◽  
Vol 19 (1) ◽  
pp. 320
Author(s):  
Y. M. Shin ◽  
S. M. Chang ◽  
B. C. Kim ◽  
C. S. Park ◽  
D. I. Jin

Transgenic animals can be generated by nuclear transfer with genetically modified somatic cells in which the essential procedure of transgene transfection is required. Most transgene vectors are constructed to contain transgene and drug-resistant genes to enrich for somatic cells in which transgene integration has occurred. However, construction of transgene vectors along with drug-resistant genes may not be easy, due to inappropriate restriction sites. Therefore, in this study, two separate constructs, human tPA cDNA fused to β-casein promoter sequence as a transgene vector and neomycin-resistant gene (Neor) driven by PGK promoter as a drug-selectable gene, were co-transfected into pig and goat fetal fibroblast cells to estimate the efficiency of transgene transfection following G418 selection. First, goat fetal fibroblasts (GFF) and pig fetal fibroblasts (PFF) were tested for G418 resistance with different concentrations of G418. The pertinent concentrations of G418 were 800 µg mL−1 for GFF and 200 µg mL−1 for PFF. The linearized tPA vector and Neor gene vector were co-transfected into goat fetal fibroblasts and pig fetal fibroblasts with FuGENE6 transfection reagent (Roche Diagnostics, Mannheim, Germany). The cells were selected following exposure of 800 µg mL−1 and 200 µg mL−1 G418 for GFF and PFF, respectively, for 14 days. Cell colonies surviving G418 selection were assayed by PCR amplification with tPA-specific primers. Initially 2 × 106 GFF and PFF were transfected. Resistant colonies were counted and transferred to 24-well plates for expansion and PCR analysis. The results of co-transfection experiments are summarized in Table 1. The transfection of 2 × 106 GFF and PFF yielded an estimated 96 and 93 colonies, respectively, which survived as the G418 selection. However, 54 colonies of GFF and 39 colonies of PFF proliferated during expansion and were subjected to PCR analysis. Twenty-three and 5 of these colonies were identified to contain tPA transgene in GFF and PFF colonies, respectively. Transfection frequencies for tPA gene were 42.6% and 12.8% in GFF and PFF, respectively. These results suggest that co-transfection of transgene vector with Neor gene can be an alternative method for transfection of transgenes into fetal fibroblast cells. Table 1. Transfection efficiency of goat fetal fibroblasts (GFF) and pig fetal fibroblasts (PFF) following co-transfection of tPA gene and Neor gene


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. O. Olsson ◽  
A. H. Tinson ◽  
N. Al Shamsi ◽  
K. S. Kuhad ◽  
R. Singh ◽  
...  

AbstractCloning, through somatic cell nuclear transfer (SCNT), has the potential for a large expansion of genetically favorable traits in a population in a relatively short term. In the present study we aimed to produce multiple cloned camels from racing, show and dairy exemplars. We compared several parameters including oocyte source, donor cell and breed differences, transfer methods, embryo formation and pregnancy rates and maintenance following SCNT. We successfully achieved 47 pregnancies, 28 births and 19 cloned offspring who are at present healthy and have developed normally. Here we report cloned camels from surgical embryo transfer and correlate blastocyst formation rates with the ability to achieve pregnancies. We found no difference in the parameters affecting production of clones by camel breed, and show clear differences on oocyte source in cloning outcomes. Taken together we demonstrate that large scale cloning of camels is possible and that further improvements can be achieved.


2012 ◽  
Vol 22 (1) ◽  
pp. 131-142 ◽  
Author(s):  
Amir Amiri Yekta ◽  
Azam Dalman ◽  
Poopak Eftekhari-Yazdi ◽  
Mohammad Hossein Sanati ◽  
Abdol Hossein Shahverdi ◽  
...  

2006 ◽  
Vol 18 (2) ◽  
pp. 118
Author(s):  
K. S. Ahn ◽  
M. Kwon ◽  
B. C. Koo ◽  
J. Y. Won ◽  
S. Y. Heo ◽  
...  

Constitutive expression of A transgene often results in serious physiological disturbances in transgenic animals. For instance, systemic overexpression of human growth hormone in transgenic pigs has resulted in detrimental side effects in general health and reproductive performance. One of the solutions to such problem would be inducible expression of a transgene that may restrict production of foreign proteins from transgenic animals only when needed. In this study, a retrovirus vector was designed to express the green fluorescent protein (GFP) gene under the control of the tetracycline-inducible promoter. Transformation of porcine fetal fibroblast cells was achieved by infection of the cells with the vector and subsequent antibiotic selection. To induce transgene expression, transformed porcine fetal fibroblast cells were cultured in medium supplemented with doxycycline for 48 h. Induction of the GFP gene was verified by the emission of fluorescence from transformed cells. Nuclei of transformed cells with or without doxycycline treatment were transferred into enucleated oocytes, and the induction efficiency was analyzed by monitoring fluorescent emission during development of reconstituted embryos to the blastocyst stage. In addition, differences in the rates of blastocyst development between experimental groups were analyzed by Student's t-test. Blastocyst formation of nuclear transfer embryos using transformed cells with tetracycline-inducible retrovirus vector (12.0%, 128/1072) was not significantly different (P > 0.05) from that with non-inducible control vectors (13.7%, 41/300), suggesting that an introduction of tetracycline-inducible retrovirus vector was not particularly harmful to the development of nuclear transfer embryos. Also, the blastocyst development rate of nuclear transfer embryos after induction of transgene by doxycycline (12.1%, 99/815) was not significantly different (P > 0.05) from that of the non-induced counterparts (11.3%, 29/257), suggesting that the induction of transgene did not affect the development of transgenic clone embryos. In a majority of embryos, high expression of the GFP gene was observed in cloned embryos with transgene induction, whereas poor or no GFP expression was detected in non-induced controls. The results from this study suggest that tetracycline-inducible expression of transgenes in nuclear transfer embryos may be used for production of foreign proteins in transgenic animals in a more controlled manner than with conventional procedures. Further experiments on transfer of cloned embryos carrying such an inducible transgene to recipients may enable production of transgenic pigs with fewer side effects from unregulated expression of the transgene.


2007 ◽  
Vol 19 (1) ◽  
pp. 137 ◽  
Author(s):  
R. Hao ◽  
A. Wuensch ◽  
R. Klose ◽  
E. Wolf ◽  
V. Zakhartchenko

Reprogramming of a donor cell genome during somatic cell nuclear transfer (SCNT) is largely dependent on appropriate expression of 'pluripotency'? genes, such as Oct-4 (POU5F1). Recently, we transfected bovine fetal fibroblasts with GOF18-ΔPE-EGFP, a reporter gene construct for the Oct-4 promoter and assessed the expression of Oct-4 after SCNT (Wuensch et al. 2006 Reprod. Fertil. Dev. 18, 144). Our previous study on DNA methylation reprogramming revealed that rabbit in vivo-fertilized and cloned embryos differ from bovine embryos in respect to this epigenetic modification (Shi et al. 2004 Biol. Reprod. 71, 340–347), suggesting differences in the mechanism of epigenetic reprogramming between these two species. In this study, we tested whether GOF18-ΔPE-EGFP could be used to monitor Oct-4 expression in rabbit cloned embryos. The reporter gene construct included the EGFP gene flanked by a 9-kb fragment of the murine Oct-4 upstream region with a deletion in the proximal enhancer (PE) and a 9-kb fragment containing the nontranscribed murine structural Oct-4 gene. The 21.2-kb fragment GOF18-DPE-EGFP was released from the vector backbone by NotI digestion and purified with QIAquickGel Extraction Kit (Qiagen, Hilden, Germany) after gel electrophoresis. Four stable transfected colonies of rabbit fetal fibroblasts (RFF), none of which exhibited green fluorescence, were used for SCNT. The resulting embryos were examined on Days 2–5 by fluorescence microscopy. To detect endogenous Oct-4 expression, in vivo-fertilized embryos were stained with anti-mouse Oct-3 antibody and then incubated with secondary Alexa 488-conjugated goat anti-mouse antibody. The most prominent endogenous Oct-4 expression was detected in in vivo-fertilized embryos at the morula and blastocyst stages. Depending on the donor cell line used for nuclear transfer, cleavage and blastocyst rates ranged from 56 to 97% and from 33 to 49%, respectively. When a total of 230 cloned embryos at the 2-to 16-cell stages and 93 cloned morulae and blastocycts were examined by fluorescence microscopy, none of the examined embryos exhibited fluorescence signals indicating the lack of Oct-4 promoter activity. Taking into account the fact that both cloned and in vivo-fertilized rabbit embryos have specific patterns of DNA methylation reprogramming, which are different from that of bovine embryos, we injected GOF18-ΔPE-EGFP gene constructs into pronuclei of in vivo-fertilized zygotes. None of the 74 injected embryos, which were examined at the 2-cell to blastocyst stages, showed fluorescence signals. Our results demonstrate that rabbit nuclear transfer and in vivo-fertilized embryos are unable to activate a mouse Oct-4 promoter-reporter construct. Potential reasons include incompatibilities between mouse Oct-4 promoter sequences and rabbit transcription factors as well as specific mechanisms of epigenetic reprogramming in the rabbit. This work was supported by the Bayerische Forschungsstiftung.


Reproduction ◽  
2001 ◽  
pp. 925-932 ◽  
Author(s):  
X Li ◽  
LH Morris ◽  
WR Allen

The influence of co-culture with either oviduct epithelial cells or fetal fibroblast cells on in vitro maturation of equine oocytes and their potential for development to blastocysts and fetuses after intracytoplasmic sperm injection (ICSI) was investigated. The oocytes were obtained from ovaries from abattoirs and were matured in vitro for 28-30 h in TCM-199 only, or in TCM-199 co-culture with oviduct epithelial cells or fetal fibroblast cells. Metaphase II oocytes were subjected to ICSI with an ionomycin-treated spermatozoon. The injected oocytes were cultured for 7-9 days in Dulbecco's modified Eagle's medium. Morphologically normal early blastocysts were transferred to the uteri of recipient mares. Nuclear maturation rates and the rates of cleavage to the two-cell stage for injected oocytes were similar in the groups of oocytes that were matured in TCM-199 (49 and 63%), in co-culture with oviduct epithelial cells (53 and 65%) or in co-culture with fetal fibroblasts (51 and 57%). There were no significant differences in the proportions of blastocysts that developed from the two-cell embryos derived from oocytes matured by co-culture with either oviduct epithelial cells (30%) or fetal fibroblasts (17%). However, significantly higher proportions of blastocysts were produced from both these co-culture groups than from the groups of oocytes matured in TCM-199 only (P < 0.05). Six of the blastocysts that had developed from oocytes co-cultured with oviduct epithelial cells were transferred into recipient mares and four pregnancies resulted. These results demonstrate a beneficial influence of co-culture with either oviduct epithelial cells or fetal fibroblasts for maturation of oocytes in vitro.


2006 ◽  
Vol 73 (7) ◽  
pp. 834-840 ◽  
Author(s):  
Guo-Cheng Lan ◽  
Zhong-Le Chang ◽  
Ming-Jiu Luo ◽  
Yun-Liang Jiang ◽  
Dong Han ◽  
...  

2017 ◽  
Author(s):  
◽  
Bethany Rae Mordhorst

Gene edited pigs serve as excellent models for biomedicine and agriculture. Currently, the most efficient way to make a reliably-edited transgenic animal is through somatic cell nuclear transfer (SCNT) also known as cloning. This process involves using cells from a donor (which may have been gene edited) that are typically grown in culture and using their nuclear content to reconstruct a new zygote. To do this, the cell may be placed in the perivitelline space of an enucleated oocyte and activated artificially by a calcium-containing media and electrical pulse waves. While it is remarkable that this process works, it is highly inefficient. In pigs the success of transferred embryos becoming live born piglets is only 1-3%. The creation of more cloned pigs enables further study for the benefit of both A) biomedicine in the development of prognosis and treatments and B) agriculture, whether it be for disease resistance, feed efficiency, gas emissions, etc. Two decades of research has not drastically improved the cloning efficiency of most mammals. One of the main impediments to successful cloning is thought to be due to inefficient nuclear reprogramming and remodeling of the donor cell nucleus. In the following chapters we detail our efforts to improve nuclear reprogramming of porcine fetal fibroblasts by altering the metabolism to be more blastomere-like in nature. We used two methods to alter metabolism 1) pharmaceutical agents and 2) hypoxia. After treating donor cells both methods were used in nuclear transfer. Pharmaceutical agents did not improve in vitro development of gestational survival of clones. Hypoxia did improve in vitro development and we are currently awaiting results of gestation.


2004 ◽  
Vol 16 (2) ◽  
pp. 151
Author(s):  
D. Melican ◽  
R. Butler ◽  
N. Hawkins ◽  
S. Nims ◽  
N. Buzzel ◽  
...  

The timing of estrus synchrony between donor and recipient does is an important consideration in an embryo transfer program. Experiments were conducted to determine the optimal time of estrus synchrony between donor and recipient dairy goats used in a commercial nuclear transfer (NT) program. Donor and recipient synchronization was achieved by implanting either a 3-mg norgestomet ear implant (Crestar®, Intervet Int. B.V., Boxmeer, Holland) or a 300-mg progesterone vaginal implant (CIDR-G®, Pharmacia and Upjohn Ltd. Co., Auckland, NZ) on Day 0. A single 5mg intramuscular injection of prostaglandin (Lutalyse®, Pharmacia and Upjohn, Kalamazoo, MI, USA) was administered on Day 7. Recipients received a single 200–500IU intramuscular injection of PMSG (Calbiochem, LaJolla, CA, USA) on Day 13. Alternatively, starting on Day 12 donors received twice daily intramuscular injection (64mg/day) of FSH (Folltropin®, Vetrepharm, Ontario, Canada) over four consecutive days. On Day 15 the implants were removed from both donors and recipients and the animals were mated several times daily to vasectomized bucks over two consecutive days. In Experiment 1, estrus synchrony or asynchrony was achieved by removing the implant from recipients at the same time or 12h later than donors, respectively. In Experiment 2, only estrus asynchrony was utilized and was achieved by removing the implant from recipients either 12 or 18h later than donors. In vivo-ovulated MII oocytes surgically recovered from superovulated donors on Day 17 were enucleated and reconstructed with transfected caprine fetal or adult skin cells or transgenic adult skin cells. Couplets were simultaneously fused, activated, and then cultured in SOF/BSA for 48h at 38°C. Two-to-eight-cell NT embryos at 48h post-fusion and activation were surgically transferred to the oviducts of surrogate recipients with similar implant types and PMSG doses. Pregnancies were determined by ultrasonography starting at approximately Day 28 post-fusion and activation and then monitored weekly. In Experiment 1, there were significantly more pregnant asynchronous recipients compared with synchronous recipients (6 of 24 v. 12 of 124 does, respectively). While there were no significant differences, more offspring were produced per embryo transferred to asynchronous recipients compared with synchronous recipients (5 of 135 v. 11 of 690 offspring per embryo transferred, respectively). In Experiment 2, while not significant, there were more pregnant +12-h asynchronous recipients compared with +18-h asynchronous recipients (16 of 72 v. 5 of 36 does, respectively). Again, while there were no significant differences, more offspring were produced per embryo transferred to +12h compared with +18h asynchronous recipients (11 of 424 v. 3 of 224 offspring per embryo transferred, respectively). These results suggest that asynchrony of estrus between recipients and donors is more beneficial in a commercial caprine NT program, and that +12h may be a more optimal period of asynchrony for recipient does receiving NT embryos. Table 1 Summary of recipient estrus synchronization


Sign in / Sign up

Export Citation Format

Share Document