scholarly journals Diploid porcine parthenotes produced by inhibition of first polar body extrusion during in vitro maturation of follicular oocytes

Reproduction ◽  
2006 ◽  
Vol 132 (4) ◽  
pp. 559-570 ◽  
Author(s):  
Tamás Somfai ◽  
Manabu Ozawa ◽  
Junko Noguchi ◽  
Hiroyuki Kaneko ◽  
Katsuhiko Ohnuma ◽  
...  

We investigated nuclear progression and in vitro embryonic development after parthenogenetic activation of porcine oocytes exposed to cytochalasin B (CB) during in vitro maturation (IVM). Nuclear progression was similar in control oocytes and oocytes matured in the presence of 1 μg/ml CB (IVM-CB group) by 37 h IVM; at this time the proportion of oocytes that had reached or passed through the anaphase-I stage did not differ significantly between the IVM-CB and the control groups (61.3 and 69.9% respectively; P < 0.05). After IVM for 37 h, no polar body extrusion was observed in the IVM-CB group. In these oocytes, the two lumps of homologous chromosomes remained in the ooplasm after their segregation and turned into two irregular sets of condensed chromosomes. By 41 h IVM, the double sets of chromosomes had reunited in 89.5% IVM-CB oocytes and formed a single large metaphase plate, whereas 68.8% of the control oocytes had reached the metaphase-II stage by this time. When IVM-CB oocytes cultured for 46 h were stimulated with an electrical pulse and subsequently cultured for 8 h without CB, 39.0% of them extruded a polar body and 82.9% of them had a female pronucleus. Chromosome analysis revealed that the majority of oocytes that extruded a polar body were diploid in both the control and the IVM-CB groups. However, the incidence of polyploidy in the IVM-CB group was higher than that in the control group (P < 0.05). In vitro development of diploid parthenotes in the control and the IVM-CB groups was similar in terms of blastocyst formation rates (45.8 and 42.8% respectively), number of blastomeres (39.9 and 44.4 respectively), the percentage of dead cells (4.3 and 2.9% respectively), and the frequency of apoptotic cells (7.3 and 6.3% respectively). Tetraploid embryos had a lower blastocyst formation rate (25.5%) and number of cells (26.2); however, the proportion of apoptotic nuclei (7.0%) was similar to that in diploid parthenotes. These results suggest that the proportion of homozygous and heterozygous genes does not affect in vitro embryo development to the blastocyst stage.

2006 ◽  
Vol 18 (2) ◽  
pp. 266
Author(s):  
T. Somfai ◽  
K. Kikuchi ◽  
J. Noguchi ◽  
H. Kaneko ◽  
K. Ohnuma ◽  
...  

Diploid parthenotes are usually obtained by the inhibition of second polar body (PB2) extrusion after activation of metaphase II (MII) oocytes. However, diploid embryos can be generated by the inhibition of the first polar body (PB1) extrusion as well, using cytochalasin B (CB) during in vitro maturation prior the activation procedure. A higher percentage of mouse embryos generated by the activation of MII oocytes and the inhibition of PB2 extrusion were proven to be homozygous than for parthenotes obtained by the latter method (Kubiak et al. 1991 Development 111, 763-769). The aim of the present study was to examine if such difference has any effect on the development of parthenogenetic embryos in vitro. Nuclear progression and in vitro embryonic development after parthenogenetic activation of porcine oocytes exposed to CB during in vitro maturation (IVM) was investigated in the present study. The tendency of nuclear maturation was similar in oocytes matured in the presence of 1 �g/mL CB (IVM-CB group) and control oocytes matured without CB after 37 h of IVM; at this time the frequency of oocytes that had reached/or passed through anaphase-I stage did not differ significantly (P < 0.05) between the IVM-CB and the control groups (61.3% and 69.9%, respectively), however, no polar body extrusion was observed in the IVM-CB group and the two lumps of homologue chromosomes remained in the oocyte and turned into two irregular sets of condensed chromosomes. By 41 h of IVM, the double sets of chromosomes re-united in 89.5% of IVM-CB oocytes and formed a single large metaphase plate, whereas 68.8% of the control oocytes had reached metaphase-II stage (MII) by this time. When IVM-CB oocytes were electrically (1.5 kV/cm for 100 �s) activated and subsequently cultured without CB, 39% of the oocytes extruded a polar body (PB) and 82.9% of them had a female pronucleus. When those oocytes with PB were cultured, the blastocyst rate of the cleaved embryos did not differ (P < 0.05) from those of the control that were stimulated at MII and subsequently treated with CB (43.3% and 48.2%, respectively). The number of blastomeres in Day 6 blastocysts was significantly higher (P < 0.05) in the IVM-CB derived embryos than in those in the control group (47.8 and 40.7, respectively); moreover, the ratio of dead blastomeres (dead cells : live cells) was higher (P < 0.05) in the control than in the IVM-CB blastocysts (0.047 and 0.031, respectively). A possible explanation for this result might be a lower frequency of homozygous genes in IVM-CB parthenotes, in which segregation of sister chromatids were promoted instead of segregation of homologous chromosomes to obtain diploid embryos. In such embryos the expression of recessive lethal, sublethal and subvital genes might have a lower probability. This work was supported by the Japanese-Hungarian bilateral scientific and technological cooperation (TET JAP-11/02).


2015 ◽  
Vol 27 (1) ◽  
pp. 113
Author(s):  
L. T. K. Do ◽  
Y. Sato ◽  
M. Taniguchi ◽  
T. Otoi

The developmental ability of interspecies somatic cell nuclear transfer (iSCNT) embryos decreases as the taxonomic distance between the donor and recipient species increases. Treatment of cat iSCNT embryos using bovine oocytes with 50 nM of trichostatin A (TSA) improves in vitro embryonic development (Wittayarat et al. 2013 Cell. Reprogram. 15, 301–308). This study investigated whether the TSA treatment effects differ between the development of cat iSCNT embryos reconstructed with porcine and bovine oocytes. Porcine and bovine cumulus-oocyte complexes were in vitro matured for 44 h and 24 h, respectively. After cumulus cell removal, enucleation was performed by aspiration of the metaphase II plate and the first polar body using a piezo-driven pipette. A cat fibroblast cell was then injected into cytoplasm of successfully enucleated oocyte. Reconstructed cybrids were electrically activated by a single 1.5 kV cm–1 pulse for 100 µs (pig-cat embryos), or a 2.3 kV cm–1 pulse for 30 µs (cow-cat embryos). Pig-cat and cow-cat embryos were cultured in porcine zygote medium (PZM)-5 and modified synthetic oviducal fluid medium (mSOF), respectively. After electrical activation, pig-cat and cow-cat embryos were cultured in medium supplemented with 5 µg mL–1 cytochalasin B + 50 nM TSA (TSA group) or without TSA (control group), and the cow-cat embryo medium was also supplemented with 10 µg mL–1 cycloheximide. After 2 h, TSA-treated pig-cat and cow-cat embryos were incubated in medium supplemented with TSA for 22 h, followed by 48 h incubation without TSA. Pig-cat and cow-cat control embryos were cultured in medium without TSA for 70 h after activation. Then, all pig-cat and cow-cat embryos were cultured in porcine blastocyst medium (PBM) or mSOF medium supplemented with 5% fetal bovine serum, respectively, for 5 additional days. Four to seven replicates were performed for each experiment. Data were analysed using Student's t-test. For pig-cat embryos, no difference was observed in cleavage rates between both groups, but development to the blastocyst stage was higher in the pig control group (n = 147, 8.0%) than that of pig TSA group (n = 131, 0.7%; P < 0.05). In contrast, development to the blastocyst stage in cow-cat embryos was not observed in the cow control group (n = 125, 0%), but it was observed in cow TSA group (n = 136, 3.7%). These results indicate that TSA treatment effects are species-specific, but those effects remain to be clarified.


2021 ◽  
Vol 10 (2) ◽  
pp. 46
Author(s):  
Sepvian Dewi Kurniawati ◽  
Suryanie Sarudji ◽  
Widjiati Widjiati

This study was aimed to determine the effect of urea in maturation medium on in vitro oocyte maturation rate. The medium used was TCM-199 added with Hepes, NaHCO3, Kanamycin 0.15 IU/mL, PMSG, 0.15 IU/mL hCG, and 10% FBS. Cumulus oocyte complexes (COCs) of cows derived from follicle aspiration were divided into three groups. In control group (P0), the COCs were matured in vitro in a maturation medium without urea addition, meanwhile in the P1 and P2 groups, the medium was added with urea 20 and 40 mg/dL, respectively. Each petri dish contained three drops of maturation medium (300 µl/drops) according to the groups. Microdrops were coated with mineral oil and then incubated in a 5% CO2 incubator, at 39 ˚C with maximum humidity. Aceto-orcein staining was conducted to evaluate the maturation of oocytes based on the achievement of metaphase II phase that is indicated by the presence of metaphase plate and/or first polar body. The result showed that the oocyte maturation rates of P0, P1, and P2 were 51.25, 52.43 (p >0.05), and 46.88 % (p <0.05) respectively. It could be concluded that the presence of urea at 40 mg/dL in maturation medium reduced the percentage of bovine oocyte maturation in vitro.


2007 ◽  
Vol 19 (1) ◽  
pp. 184 ◽  
Author(s):  
T. Somfai ◽  
M. Ozawa ◽  
J. Noguchi ◽  
H. Kaneko ◽  
K. Ohnuma ◽  
...  

The present study investigated the ability of in vitro-matured (IVM) porcine oocytes to be fertilized in vitro after vitrification. Oocytes matured in vitro for 46 h according to Kikuchi et al. (2002 Biol. Reprod. 66, 1033–1041) were cryopreserved by solid surface vitrification (SSV; Dinnyes et al. 2000 Biol. Reprod. 63, 513–518) or subjected to the steps of SSV without cooling (toxicity control, TC). Oocyte viability was assessed 2 h after treatment by morphology and fluorescein diacetate staining. Live oocytes were in vitro-fertilized (IVF) and cultured (IVC) for 6 days according to Kikuchi et al. (2002). Fertilization and pronuclear development of oocytes were assessed 10 h after IVF by aceto-orcein staining. Cleavage and blastocyst rates were recorded during IVC. Glutathione (GSH) and hydrogen peroxide levels in oocytes were analyzed by DTNB-glutathione disulfide reductase recycling assay and 20,70-dichlorofluorescein fluorescence assay, respectively. Data were analyzed by ANOVA and paired t-test. The rate of live oocytes after SSV was lower compared to the control and the TC groups (54.4%, 100%, and 100%, respectively; P &lt; 0.05). Sperm penetration rates of SSV oocytes were lower than those of the control group (51.9% and 67.8%, respectively; P &lt; 0.05). Significantly fewer penetrated oocytes in the SSV group formed male pronuclei than those in the control and the TC groups (66.7%, 96.5%, and 98.5%, respectively; P &lt; 0.05). There were no differences in second polar body extrusion and monospermy rates between the treatment groups. The cleavage rate of SSV oocytes was significantly lower than that of the control and the TC groups (13.3%, 46.6%, and 47.7%, respectively; P &lt; 0.05). Blastocyst rates of control and TC oocytes were similar (20.7% and 23.6%, respectively), whereas only a single embryo developed to the blastocyst stage in the SSV group. GSH content of SSV oocytes was significantly lower than that of the control oocytes (7.3 pM and 10.5 pM, respectively), whereas the peroxide level was higher in SSV oocytes than in the control oocytes (59.0 and 50.5 FIU, respectively; P &lt; 0.05). Our results reveal a cryopreservation-related drop of intracellular GSH level in oocytes, which may cause their decreased ability to form a male pronucleus and their increased sensitivity to oxidative stress. These factors might contribute to the low developmental competence of vitrified oocytes. This work was supported by a grant-in-aid for the Japanese Society for the Promotion of Science Postdoctoral Fellowship for Foreign Researchers (P05648) and the Bilateral Scientific and Technological Collaboration Grant between Hungary and Japan (TET, no. JAP-11/02).


2008 ◽  
Vol 20 (1) ◽  
pp. 145
Author(s):  
H. J. Kim ◽  
S. R. Cho ◽  
C. Y. Choe ◽  
S. H. Choi ◽  
D. S. Son ◽  
...  

The objective of this study was to examine the selection effects of in vitro matured porcine follicular oocytes with polar body extrusion and early cleavage as a non-invasive marker to know the developmental competence in advance. Porcine oocytes matured for 48 h and then examined for polar body extrusion. The examined oocytes were matured for an additional 16–18 h, activated with 7% ethanol, and cultured in 5 µg mL–1 cytochalasin B for 5 h for diploid formation. The treated oocytes were examined for cleavage after 48 h and continued culturing for 5 days. Each treatment was replicated by 3–4 times. Oocytes of 21.9% (70/320) were discarded in morphological selection, and 32.1% (167/520) oocytes were discarded by failure of first polar body extrusion. The selected oocytes were matured and activated, and after 48 h, the cleavage rate was examined. In morphologically selected oocytes, 15.8% (30/190) were not cleaved, 52.6% (100/190) were normally cleaved (consisted of 2–7 cells), and 31.6% (60/190) were hyper-cleaved (consisted of 8 cells or more) at 48 h after activation. However, in the first polar body extruded oocytes, 7.1% (18/253) were not cleaved, 73.1% (185/253) were normally cleaved, and 19.8% (50/253) were hyper-cleaved. From the morphologically selected oocytes, 16.7% (10/60) were developed up to blastocyst stage from those in which cleavage selection was not performed and 31.7% (19/60) from those in which cleavage selection was performed. From the polar body extruded oocytes, 39.0% (39/100) were developed up to blastocyst stage from those in which cleavage selection was not performed and 49.0% (49/100) from those in which cleavage selection was performed. Cleavage was examined within 12 h interval after activation (0 = time of activation) up to 48 h. At 0–12, 12–24, 24–36, and 36–48 h intervals, 4.1% (9/220), 68.6% (151/220), 19.1% (42/220), and 2.3% (5/220) oocytes were cleaved, respectively, and 5.9% (13/220) oocytes were not cleaved at 48 h after activation. The cleaved embryos in each interval were cultured and developed up to blastocyst with 0 (0/9), 39.1 (59/151), 9.5 (4/42), and 0% (0/5), respectively. This result suggests that the polar body extruded and cleaved at 12–36 h embryo has higher developmental potential than the others.


2007 ◽  
Vol 19 (1) ◽  
pp. 134
Author(s):  
P. Q. Cong ◽  
E. S. Song ◽  
E. S. Kim ◽  
Z. H. Li ◽  
Y. J. Yi ◽  
...  

Pigs have become increasingly important in the field of biomedical research, and interest has grown in the use of transgenic cloned pigs as potential xenograft donors. The present study were carried out to investigate the effects of intensity of DC pulse, number of DC pulses, and equilibration before fusion/activation on developmental ability of porcine embryos derived from nuclear transfer. Porcine cumulus-oocyte complexes (COCs) were cultured in modified TCM-199 (mTCM-199) medium for 44 h at 38.5�C, 5% CO2 in air. After in vitro maturation (IVM), metaphase II oocytes were selected for enucleation. Porcine fetal fibroblasts were obtained from a porcine fetus on Day 35 of gestation as donor cells. Oocytes were enucleated by removing, with a micropipette, the first polar body along with adjacent cytoplasm containing the metaphase plate; then a donor cell was injected in contact with the cytoplasm of each oocyte. In experiment 1, several different fusion/activation intensities (two DC pulses of 0.4, 0.8, 1.2, 1.6, and 2.0 kV cm-1 for 30 �s) were carried out to investigate the effect on the development of nuclear transfer embryos. In experiment 2, the reconstructed oocytes were fused and activated with 1, 2, or 3 DC pulses of 1.2 kV cm-1 for 30 �s. In experiment 3, reconstructed oocytes were equilibrated in mTCM-199 medium at 38.5�C, 5% CO2 for 0, 1, 2, 3, 4, 5, and 6 h. After equilibration, the reconstructed oocytes were fused and activated with one DC pulse of 1.2 kV cm-1 for 30 �s in fusion medium. The reconstructed embryos were transferred into PZM-3 medium containing 0.3% BSA for further culture. The rates of embryo cleavage and development of blastocyst stage were evaluated at 48 h and 6-7 days, respectively. The cell numbers of blastocysts were counted by using Hoechst 33342 epifluorescence staining. Data were analyzed by ANOVA and Duncan


2004 ◽  
Vol 16 (2) ◽  
pp. 271
Author(s):  
C.S. Park ◽  
D.I. Jin ◽  
M.Y. Kim ◽  
Y.J. Chang ◽  
Y.J. Yi

Efficient activation is essential for the success of animal cloning by nuclear transfer. The aim of this study was to investigate the effects of chemical activation agents on parthenogenetic development of pig oocytes matured in vitro. The medium used for oocyte maturation was TCM-199 supplemented with 26.19mM sodium bicarbonate, 0.9mM sodium pyruvate, 10μgmL−1 insulin, 2μgmL−1 vitamin B12, 25mM HEPES, 10μgmL−1 bovine apotransferrin, 150μM cysteamine, 10IUmL−1 PMSG, 10IUmL−1 hCG, 10ngmL−1 EGF, 0.4% BSA, 75μgmL−1 sodium penicillin G, 50μgmL−1 streptomycin sulfate and 10% pFF. After about 22h of maturation, oocytes were cultured without cysteamine and hormones for 22h at 38.5°C, 5% CO2 in air. Cumulus-free oocytes showing first polar body were selected for activation. Oocytes were activated as follows. First, all oocytes were activated with 25mM HEPES buffered NCSU-23 medium containing 8% ethanol for 10min. After that, in treatment 1, oocytes were incubated in the NCSU-23 medium supplemented with 7.5μgmL−1 cytochalasin B for 3h. In treatment 2, oocytes were incubated in the NCSU-23 medium supplemented with 10μgmL−1 cycloheximide for 3h. In treatment 3, oocytes were incubated in the NCSU-23 medium supplemented with 7.5μgmL−1 cytochalasin B for 1.5h, and then were incubated in the NCSU-23 medium supplemented with 10μgmL−1 cycloheximide for 1.5h. In treatment 4, oocytes were incubated in the NCSU-23 medium supplemented with 7.5μgmL−1 cytochalasin B plus 10μgmL−1 cycloheximide for 3h. Following activation, oocytes were transferred into 500μL NCSU-23 culture medium containing 0.4% BSA for further culture for 20 and 144h. Activated oocytes were fixed and stained for evaluation of activation rate, cleaved oocytes, blastocyst formation rate and cell numbers per blastocyst. Data were analysed by ANOVA and Duncan’s multiple range test using the SAS program. The rate of oocyte activation was higher in treatment 4 (62.1%) than in treatment 1, 2 and 3 (52.0, 49.6 and 58.0%, respectively). The percentage of cleaved oocytes was lower in treatment 1 and 2 (56.9 and 55.2%) than in treatment 3 and 4 (68.8 and 68.5%). The rate of blastocyst formation from the cleaved oocytes was higher in treatment 3 and 4 (19.8 and 22.0%) than in treatment 1 and 2 (12.1 and 11.7%). Mean cells per blastocyst were lowest in treatment 2 (21.2±0.9) compared to treatment 1, 3 and 4 (27.3±2.2, 30.4±3.8 and 30.9±3.4, respectively). In conclusion, cytochalasin B combined with cycloheximide was more efficient for parthenogenetic development of pig oocytes matured in vitro.


2020 ◽  
Vol 10 (4) ◽  
pp. 658-664
Author(s):  
G Ashour ◽  
Ashraf El-Sayed ◽  
M Khalifa ◽  
Nasser Ghanem

The deleterious effect of heat stress on cumulus-oocytes complexes (COCs) competence is well recognized in different livestock species. Therefore, the present study aimed to investigate the effect of physiologically relevant heat stress on the developmental competence of camel COCs during in vitro maturation (IVM). A total of 1548 COCs were divided into six groups in this study. The groups were named K1 and K2 representing good and low-quality COCs incubated at 38.5oC for 30 hours. While K3 and k4 represent good and low-quality COCs exposed to 41oC for the first 6 hours of IVM. Finally, K5 and k6 represent the groups of good and low-quality COCs exposed to 42oC for the first 6 hours of IVM. After exposure of COCs to heat stress at 41°C and 42°C during the first 6 hours of in vitro maturation, the COCs were incubated at 38.5°C for 24 hours of IVM. The in vitro matured COCs were activated to cleave using ethanol followed by 4 mM 6-DMAP and developed embryos were cultured in vitro for 7 days post parthenogenetic activation. The results of this study indicated that heat stress at 42oC significantly decreased the Pb (polar body) extrusion rate in K4 and K6, compared to other groups. Additionally, the embryo cleavage rate was significantly lower for good and low-quality oocytes exposed to heat stress (K2, K3, K4, K5, and K6), compared to good quality COCs of the control group (K1). The cleavage rate was lower for low quality (K2; 63 ± 1.28) than good quality COCs (K1; 53 ± 1.85). The percentages of oocytes that developed to the blastocyst stage were lower for K2, K3, K4, K5, and K6 than K1. Moreover, the blastocyst rate was lower for K2 (9 ± 0.22) than K1 (15 ± 0.22). The results of this study indicated that exposure of camel oocytes to heat stress for 6 hours during in vitro maturation severely reduced extrusion of polar body, cleavage, and blastocyst rates. The low-quality camel COCs were reduced developmental capacity than good quality oocytes.


2006 ◽  
Vol 18 (2) ◽  
pp. 249 ◽  
Author(s):  
N. Maedomari ◽  
N. Kashiwazaki ◽  
M. Ozawa ◽  
A. Takizawa ◽  
J. Noguchi ◽  
...  

It is generally accepted that cumulus cells (CCs) support the nuclear maturation of immature oocytes in mammals. However, the precise mechanism of interaction between cumulus cells and oocytes has not been clarified. Furthermore, the role of cumulus cells in embryonic development has not been reported. In the present study, the effect of denuding cumulus cells from porcine oocytes on oocyte maturation, ertilization, and their subsequent development to the blastocyst stage was examined in vitro. In vitro maturation, fertilization, and culture were carried out as previously reported (Kikuchi et al. 2002 Biol. Reprod. 66, 1033-1041). Porcine cumulus-oocyte complexes (COCs) were collected; some of them were completely denuded of cumulus cells immediately after the collection (DO-0 group). The remaining intact COCs and the DO-0 oocytes were cultured for 24 h in the presence of dbcAMP and hormones. After the initial culture, some of the intact COCs were denuded either completely (DO-24 group) or partially (H-DO-24 group). Additionally, some of DO-24 oocytes were co-cultured with the cumulus cells removed at 0 h and pre-cultured for 24 h (DO-24 + CCs group). The denuded oocytes in each experimental group and intact COCs (control) were further cultured for total 46 h. The remaining oocytes with a first polar body were either examined for the levels of intracellular glutathione (GSH) or fertilized in vitro with frozen-thawed boar spermatozoa. The inseminated oocytes were cultured and examined for their fertilization status after 10 h and for their developmental competence after 6 days. Data were analyzed by ANOVA, followed by the Duncan's multiple range tests. The maturation rates of all denuded groups were significantly lower (P < 0.05; 34.3 to 45.0%) than that of the control group (64.5%). Intracellular GSH concentrations of all denuded groups were also significantly lower (P < 0.05; 4.03 to 7.00 pmol/oocyte) than that of the control group (9.60 pmol/oocyte); however, the GSH level of H-DO-24 oocytes was significantly higher (P < 0.05) than the GSH levels in the other denuded groups. Male pronuclear formation rates of completely denuded oocytes (DO-0, DO-24, and DO-24 + CCs groups) were significantly lower (P < 0.05; 41.4 to 59.3%) than those of the control (89.4%) and the H-DO-24 (80.0%) groups. The blastocyst rate of the control group was significantly higher (P < 0.05; 19.9%) than that of H-DO-24 group (11.6%), and these rates were significantly higher (P < 0.05) than those of the completely denuded groups (3.0 to 4.5%). The results suggest that the presence of cumulus cells during maturation culture improves nuclear maturation of oocytes and plays an important role in embryonic development to the blastocyst stage in vitro.


2007 ◽  
Vol 19 (1) ◽  
pp. 149
Author(s):  
N. Maedomari ◽  
K. Kikuchi ◽  
M. Fahrudin ◽  
M. Nakai ◽  
M. Ozawa ◽  
...  

Metaphase-II chromosome transfer (M-II transfer) is considered to be a useful technique for studying nucleus–cytoplasm relationships, or for generating oocytes with good developmental ability after transfer of the nucleus to the cytoplasm. The reconstructed oocytes carry the original genomic information within the metaphase chromosomes from the donor oocytes. The objective of the present study was to evaluate the parthenogenetic developmental ability of porcine M-II transferred oocytes. In vitro maturation was carried out as reported previously (Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041). After culture for 44 h, cumulus cells were removed by hyaluronidase treatment and gentle pipetting. Oocytes that had extruded the first polar body were selected and centrifuged at 13 000g for 9 min to stratify the cytoplasm. The zonae pellucidae were removed after exposure to pronase, and zona-free oocytes were layered on a 300 �L discontinuous gradient (100 �L each of 45%, 30%, and 7.5%) of Percoll in TCM-HEPES supplemented with 5 �g mL-1 cytochalasin B. After centrifugation of the oocytes on the gradient in microcentrifuge tubes at 6000g for 20 s, fragmented cytoplasm with an equal volume was obtained, stained with Hoechst 33342, and classified as cytoplasm with or without chromosomes by observation with a fluorescence microscope. One fragmented cytoplasm with chromosomes and 2 fragmented cytoplasms without chromosomes were fused by electric stimulation with a single DC pulse (1.5 kV cm-1, 20 �s) and cultured temporarily for 1 h. The reconstructed oocytes were then stimulated again to induce parthenogenetic activation (0.8 kV cm-1, 30 �s, 2 DC pulses) (treatment group). Zona-free mature oocytes that had not been subjected to reconstruction were activated as a control group. The oocytes in both groups were treated with 5 �g mL-1 cytochalasin B for 2 h, and then cultured for 6 days in media (Kikuchi et al. 2002) using the WOW system (Gabor et al. 2000 Mol. Reprod. Dev.). The blastocyst formation rate in the control group (22.9 � 5.5%) was significantly higher (P &lt; 0.05; ANOVA and PLSD-test) than that in the treatment group (7.6 � 1.8%). The total cell number per blastocyst in the control group (28.7 � 4.6) was significantly higher (P &lt; 0.05) than that in the treatment group (16.7 � 1.0). These results suggest that reconstructed porcine oocytes following M-II transfer by centrifugation and electrofusion can develop to the blastocyst stage in vitro. This technique enables transfer of the nucleus to cytoplasm with good developmental ability without the use of a micro-manipulation system.


Sign in / Sign up

Export Citation Format

Share Document